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Abstract In this work, we studied the use of combination models to integrate
audio and video quality estimates to predict the overall audio-visual quality.
More specifically, an overall quality prediction for an audio-visual signal is ob-
tained by combining the outputs of individual audio and video quality metrics
with either a linear, a Minkowski, or a power function. A total of 7 different
video quality metrics are considered, from which 3 are Full-Reference and 4
are No-Reference. Similarly, a total of 4 audio quality metrics are tested, 2 of
which are Full-Reference and 2 are No-Reference. In total, we tested 18 Full-
Reference audio-visual combination metrics and 24 No-Reference audio-visual
combination metrics. The performance of all combination metrics are tested
on two different audio-visual databases. Therefore, besides analysing the per-
formance of a set of individual audio and video quality metrics, we analyzed
the performance of the models that combine these audio and video quality
metrics. This work gives an important contribution to the area of audio-visual
quality assessment, since previous works either tested combination models only
on subjective quality scores or used linear models to combine the outputs of
a limited number of audio and video quality metrics.
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1 Introduction

The great progress achieved by communications in the last twenty years is
reflected by the amount of multimedia services available nowadays. One of the
most popular multimedia services is the internet-based streaming, which has
more recently gained an even bigger popularity. It is, nevertheless, understood
that the success of this service relies heavily on its trustworthiness and on the
quality of the content provided. Under these circumstances, the development of
efficient real-time quality monitoring tools, which can quantify the audio-visual
experience of multimedia services (as perceived by the end user) can bring real
benefits to Internet Service Providers (ISP) and broadcast companies.

Psychophysical experiments are considered the most precise method to es-
timate the quality of audio-visual signals [1]. Unfortunately, these experiments
are often expensive in terms of time and resources. Therefore, fast algorithms
(objective quality metrics) arise as a good alternative for automatically deter-
mining the quality of audio-visual signals, as perceived by the end user [2]. To
obtain a numerical estimate for the perceived quality, objective quality metrics
use computational methods to process and evaluate signals. Depending on the
amount of reference (original signal) information required by their algorithms,
objective quality metrics can be classified as Full-Reference (FR), Reduced
Reference (RR), and No-Reference (NR) metrics. In the case of FR metrics,
the entire reference is needed at the measurement point to obtain the quality
estimation. For the RR metrics, only a part of the reference is needed, which
can be made available at the measurement point through an auxiliary channel.
Finally, for the NR metrics the quality estimation is obtained blindly, using
only the test video.

There is an ongoing effort to develop video quality metrics that estimate
quality as perceived by human viewers, but most of the achievements have
been in the development of FR video quality metrics [2,3,4]. Much remains
to be done in the area of no-reference (NR) quality metrics [4]. Also, very few
objective metrics have addressed the issue of simultaneously measuring the
quality of multimedia content (e.g. video, audio, and text), as pointed out by
Pinson et al. [5]. For the simpler case of audio-visual content, a lot of work
has been done on trying to understand audio-visual quality, what resulted in
several subjective models [6,7]. But, only a few works tackle the problem of
developing audio-visual objective quality metrics [8,9].

In this work, we investigate how to assess the quality of audio-visual sig-
nals using combinations of simple audio and video quality metrics. The audio
and video metrics are combined using three models: Linear, Minkowski, and
Power functions. The combination models were inspired in the analysis of data
gathered from 3 psychophysical experiments in which audio and video quality
scores were collected. Using these combination models, we propose a set of FR
and NR audio-visual quality assessment methods. Each method is composed
by a video quality metric, an audio quality metric, and a model that combines
the audio and video (objective) predictions to provide an overall audio-visual
quality estimate. A total of 7 different video quality metrics are considered,
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from which 3 are FR and 4 are NR. Similarly, a total of 4 audio quality met-
rics are considered, 2 of them are FR and 2 are NR. The performance of these
audio-visual quality methods is tested and validated using two audio-visual
quality databases.

Besides presenting a performance analysis of a set of audio and video qual-
ity metrics, the results presented in this work contribute to a better under-
standing of how audio and video objective quality scores can be combined to
predict the overall audio-visual quality. Given the mature state-of-the-art of
audio and video quality metrics, we believe this is an important step towards
the design of accurate audio-visual quality metrics. In this work, we explore
the use of three combination models (Minkowski, linear, and power models) for
audio-visual quality assessment. We tested these models using a set of video
and audio quality metrics (both NR and FR), validating them on two different
quality databases. We believe this work is an important contribution to the
area of audio-visual quality assessment, given that previous works either tested
combination models only on subjective scores or used only linear models to
combine the outputs of a limited number of audio and video quality metrics.

This paper is divided as follows. Section 2 presents a brief description of
some combination techniques used in previous studies. In Section 3, we describe
the three psychophysical experiments that are part of the UnB Audio-Visual
Quality (UnB-AVQ) Database 1. In Section 4, we present the combination
models used to merge the audio and video predictions. In Sections 5 and 6,
the FR and NR audio-visual quality assessment methods are presented. A
performance analysis of the two approaches is carried out using the database
described in Section 3. In Section 7, both groups of FR and NR audio-visual
metrics are tested using the NTIA audio-visual quality database. Finally, in
Section 8, our conclusions are discussed.

2 Related Work

Several audio and video quality metrics have been proposed in the past few
years. Several of these metrics present good performance levels, in terms of
complexity and accuracy [10], but they are only capable of estimating either
audio or video quality, but not both. Among the different approaches used in
the design of quality metrics, a few methods use different models to combine
the contributions of the most common degradations (artifacts) to produce the
overall quality. For instance, Farias designed a no-reference (NR) video quality
metric in which the overall annoyance is predicted by combining the outputs
of blurring, blocking, and noise strength metrics [14]. One of the combinations
models used in this work was a weighted Minkowski model. Additionally, Wang
and Bovik [15] developed an objective NR image quality metric, targeted at
JPEG compressed images, which combines the outputs of a blocking and a
blurring strength metrics to estimate the overall image quality. The outputs
of these two metrics were combined using a non-linear power model.
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Given the progress achieved in the area of audio and video quality assess-
ment (independently) [11], the next step is the design of an audio-visual quality
metric. Considering that audio-only or video-only quality metrics cannot es-
timate audio-visual quality [12], a recent research trend is the use of models
that combine the outputs of audio and video metrics to estimate audio-visual
quality [5]. The first audio-visual combination models were tested on subjec-
tive quality scores [7], [12],[13]. Although these works cannot be used in real
multimedia applications, their results have helped understand how individ-
ual audio and video quality estimates can be combined to predict the overall
audio-visual quality.

Currently, there are only a few audio-visual objective quality metrics avail-
able in the literature. Up to our knowledge, most of them are parametric met-
rics, i.e. metrics that estimate quality using the information available at the
receiver, such as bitrate, frame rate, quantization index, motion vectors, and
network information. Among the currently available audio-visual parametric
metrics, we can cite the works of Garcia et al. [8] and Yamagishi and Gao
[9]. The parametric model proposed by Yamagishi and Gao [9], standardized
in ITU-T Recommendation P.1201, uses information extracted from packet
headers and network. Garcia et al. [8] proposed a parametric metric that uses
impairment factors, which are extracted from the bitstream or packet head-
ers, to quantify the overall quality. Although parametric metrics are faster
than pixel-based video quality metrics, they are dependent on the type of
coding and transmission process, what makes them less generally applicable.
In other words, they cannot predict the quality of ‘offline’ content, like, for
example, content transcoded among different compression standards/bitrates
or processed using specific signal processing techniques.

It is worth pointing out that, in previous works, one of the most popu-
lar combination models is the linear model [7],[13],[8]. This model has the
advantage of being very simple, however it does not provide a good accuracy
performance. In fact, studies have shown that better accuracy performance can
be obtained when a power model, which inludes a multiplicative cross term
(audio quality × video quality), is used to predict audio-visual quality [5]. In
this work, besides testing linear and power models, we also tested Minkowki
models.

3 Psychophysical Experiments

To design better audio-visual metrics, we first need to understand how audio
and video components interact with each other and how these components can
be combined to produce the overall audio-visual quality. With this goal, in this
work, we use data collected from human observers/listeners who participated
in three psychophysical experiments. Using the subjective responses from all
participants we were able to measure the audio, video, and audio-visual quality
of compressed audio-visual signals.
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Fig. 1: Sample frames of the original videos from the UnB Audio-Visual Qual-
ity (UnB-AVQ) Database 1, available at http://www.ene.unb.br/mylene/

databases.html

The experiments are part of the UnB Audio-Visual Quality (UnB-AVQ)
Database 1. In these experiments, six original high definition video sequences
(with audio and video components) from The Consumer Digital Video Li-
brary1 are used. Representative frames of the original sequences are shown in
Figure 1. Each sequence is eight seconds long and has a spatial and tempo-
ral resolution of 1280x720 (720p) and 30 frames per second (fps) respectively.
Each source sequence was compressed using four video bitrates and three au-
dio bitrates. The video and audio components were individually compressed
and, then, combined. The bitrate values were chosen to provide similar ranges
of quality for the audio and video sequences. Specifications of the codecs, bi-
trates, and number of sequences are listed in Table 1. Detailed information
regarding the UnB-AVQ database can be found in a previous work [16].

All three experiments were conducted following the International Telecom-
munications Union (ITU) recommendation ITU-R. BT-500 [1], which details
the necessary equipment, the physical conditions, the selection of participants,
and the experimental methodology. The experiments were run with two par-
ticipants at a time. Therefore, two separate desktop computers, two LCD
monitors, and two sets of earphones were installed in the room. Detailed spec-
ifications of the equipment used in the experiments are depicted in Table 2.
Experiments took place in a recording studio (sound proof) with the lights
completely dimmed to avoid any light reflection on the monitors. Distance

1 http://www.cdvl.org

http://www.ene.unb.br/mylene/databases.html
http://www.ene.unb.br/mylene/databases.html
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Table 1: Detailed Specifications for Experiments I-III of UnB Audio-Visual
Quality (UnB-AVQ) Database 1. Download from: http://www.ene.unb.br/
mylene/databases.html

Experiment I Experiment II Experiment III
Component Video Audio Audio + Video

Bitrate 30, 2, 1, 0.8 MB/s 128, 96, 48 KB/s 128, 96, 48 KB/s
30, 2, 1, 0.8 MB/s

Codec H.264 MPEG-1 Layer 3 MPEG-1 Layer 3
H.264

# Test seq. 30 24 78
# Subjects 16 16 17

Table 2: Technical specifications of monitors and earphones used in the sub-
jective experiments.

Monitor 1 Samsung SyncMaster P2370
Resolution: 1,920×1,080; Pixel-response rate: 2ms;
Contrast ratio: 1,000:1; Brightness: 250cd/m2

Monitor 2 Samsung SyncMaster P2270
Resolution: 1,920×1,080; Pixel-response rate: 2ms;
Contrast ratio: 1,000:1; Brightness: 250cd/m2

Earphones Philips SHL580028 Headband Headphones
Sensitivity: 106dB; Maximum power input: 50mW;
Frequency response: 1028 Hz; Speaker diameter: 40mm.

between subjects eyes and the monitor was set at three screen heights (3H),
in accordance with ITU-R. BT-500 [1].

Participants were volunteers from the University of Brasilia, Brazil. They
were mostly graduate students from the departments of Computer Science and
Electrical Engineering. No particular vision or hearing test was performed on
the participants. But, they were asked to wear glasses or contact lenses if they
needed them to watch TV. The number of participants for each experiment is
depicted in Table 1

Regarding the assessment method, a double-stimulus continuous quality-
scale methodology was applied (ITU Recommendation BT-500 [1]). Such metho-
dology implies that, for each trial of the experiment, two sequences (with the
same content) are presented to the participant: a reference sequence and a
test sequence. After these two sequences are presented (in random order),
participants are asked to give a quality score for each sequence. Additionally,
to familiarize the participant with the test procedure and guarantee reliable
results, Display and Training sessions were included at the beginning of the
experiment.

In Experiment I, subjects evaluated the quality of video (only) sequences
compressed using the H.264 codec. In Experiment II, subjects evaluated the
quality of audio (only) sequences compressed with MPEG-I layer-3 codec. Fi-

http://www.ene.unb.br/mylene/databases.html
http://www.ene.unb.br/mylene/databases.html
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Fig. 2: Subective Results Unb AVQ Database 1, available at http://www.ene.
unb.br/mylene/databases.html.

nally, in Experiment III, both audio and video components were independently
compressed and subjects evaluated the overall audio-visual quality.

For all experiments, the quality scores were averaged over the subjects to
produce a Mean Opinion Score (MOS) for each test sequence, presented in a
0 - 100 range. Figure 2 presents a scatter plot with results from the subjective
experiments for each single component (audio and video). After analysing the
experimental results, we observed that the bitrate of the video component has a
higher impact on the global audio-visual quality than the bitrate of the audio
component. Also, the characteristics of both video and audio content affect
the perceived audio-visual quality [16,17]. The videos and the corresponding
subjective data of the UnB Audio-Visual Quality (UnB-AVQ) Database 1 are
available for download at the website of the Group of Digital Signal Processing
of the University of Brasilia2.

4 Perceptual Quality Models

Based on the results gathered from Experiments I-III, we developed a set
of subjective audio-visual quality models. Similarly to what is found in the
literature [7], three functions were used to combine the audio and video MOS
values, referred as MOSa and MOSv), respectively.

The first subjective audio-visual quality model is a simple linear model,
given by the following equation:

PrMOS1 = α · MOSv + β · MOSa + γ. (1)

2 http://www.ene.unb.br/mylene/databases.html

http://www.ene.unb.br/mylene/databases.html
http://www.ene.unb.br/mylene/databases.html
http://www.ene.unb.br/mylene/databases.html
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Table 3: Pearson correlation coefficients (PCC) of subjective models tested on
low and high quality material sub-sets.

Video bitrate Audio bitrate Number of PCC PCC PCC
(Mbps) (Kbps) Sequences PrMOS1 PrMOS2 PrMOS3

Low (1, 0.8) All (48, 96, 128) 36 0.8050 0.8178 0.8214
Low (48, 96) 24 0.8227 0.8539 0.8540
High (128) 12 0.6971 0.7268 0.7307

High (2, 30) All (48, 96, 128) 36 0.8602 0.8769 0.8944
Low (48, 96) 24 0.7891 0.8161 0.8441
High (128) 12 0.9034 0.9119 0.8933

Global Results 78 0.9110 0.9197 0.9285

The fitting returned three scaling coefficients denoted by α, β (video and audio
regression coefficients, respectively), and γ (an intercept).

The second model is a weighted Minkowski function, given by:

PrMOS2 = (α · MOSp
v + β · MOSp

a)
1
p . (2)

Similarly, the fitting for the second model returned three coefficients denoted
by α, β, (weight coefficients for video and audio, respectively) and ρ (a power
coefficient).

The third subjective model is a power model, given by:

PrMOS3 = (γ + α · MOSp
v · MOSp

a). (3)

The fitting for the third model resulted in four coefficients, denoted by γ (an
intercept coefficient), α (a weight coefficient), and ρ1, ρ2 (power coefficients
for video and audio, respectively).

Pearson Correlation Coefficients (PCC) for all three perceptual models are
depicted in Table 3. By comparing all three models results, we noticed that
the power model (PrMOS3) had a slightly better performance in terms of
correlation, reaching a Pearson Correlation Coefficient (PCC) of 0.92. Further
analysis showed that the models PrMOS2 and PrMOS3 had good correlation
values for lower bitrate levels (i.e., higher levels of compression).

Inspired by these subjective audio-visual models, we combine a set of well-
known audio and video quality metrics using all 3 combination models. This
resulted in a set of FR and NR audio-visual quality metrics, which are de-
scribed in the following sections.

5 FR audio-visual metrics

To design a FR audio-visual quality metric, we use 3 video quality metrics
and 2 audio quality metrics. The chosen audio quality metrics are: the per-
ceptual evaluation of audio quality (PEAQ) [18], a well-known standardized
algorithm, and the virtual speech quality objective listener (VISQOL) [19],
which has a good performance in comparis6on to other audio metrics [20],[21].
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Table 4: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the 18 FR audio-visual metrics – tested on UnB Audio-Visual Quality (UnB-
AVQ) Database 1.

Video Audio
Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

VQM
VISQOL 0.818 0.807 0.819 0.819 0.822 0.817
PEAQ 0.753 0.778 0.691 0.710 0.720 0.736

PSNR
VISQOL 0.750 0.741 0.745 0.730 0.757 0.749
PEAQ 0.703 0.698 0.606 0.603 0.657 0.650

SSIM
VISQOL 0.707 0.704 0.667 0.664 0.710 0.720
PEAQ 0.629 0.648 0.571 0.655 0.632 0.649

Additionally, both audio metrics are computationally inexpensive. Meanwhile,
the chosen video metrics are: the video quality metric (VQM) [22], the peak
signal-to-noise ratio (PSNR), and the structural similarity (SSIM) index [23].
All three metrics are very well-known FR metrics, with relatively low compu-
tational complexity.

To obtain an audio-visual FR quality metric, the output of an audio met-
ric and the output of a video metric are combined using one of the models
described in Section 4. In total, 6 FR combination metrics (3 video × 2 audio)
were tested for each model (linear, Minkowski, and power), resulting in 18
different combinations of FR metrics. Table 4 shows the Pearson and Spear-
man Correlation Coefficients (PCC and SCC, respectively) corresponding to
the results of all 18 FR audio-visual combination metrics tested on the data of
Experiment III. Additionally, correlation coefficients for the individual audio
and video metrics are depicted at Table 5.

Notice that the audio and video metrics VISQOL and VQM have the best
individual accuracy performances, reaching coefficient values around 0.40 and
0.70, respectively. The VQM-VISQOL combination metric has the best correla-
tion coefficients, with values above 0.8 for all three models (linear, Minkowski,
and power). In particular, the power model provides the best results (among all
three models) with a PCC and SCC of 0.82 and 0.81, respectively. For the other
combination metrics, a slightly better performance is obtained with the linear
and power models. On the other hand, the PSNR-PEAQ and SSIM-PEAQ
Minkowski combination metrics has the smallest correlation values. Analysing
these results, we notice that a better integration capacity is achieved using the
linear and power combination models.

To test if the differences in Table 4 are statistically significant, a two-tailed
t-test was performed on the SCC values, considering 15 trials. These trials
were set by randomly selecting 4 out of 6 original videos in the Database I
and, then, calculating the SCC value. The SCCs values for each combination
metric are then grouped and compared with each other. Figure 3 presents the
box plot of the SCC values for each of the 18 FR audio-visual metrics.

T-test results for all FR combination metrics are presented in Table 6. Each
cell in this table reports the null hypothesis test (95% confidence interval)
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Table 5: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the individual FR audio and video metrics – tested on UnB Audio-Visual
Quality (UnB-AVQ) Database 1.

Audio Video
Single Metric VISQOL PEAQ VQM PSNR SSIM

PCC 0.424 -0.320 0.709 0.657 0.570
SCC 0.404 -0.321 0.736 0.651 0.662
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Fig. 3: Box plot of the SCC values of 18 audio-visual FR combination metrics,
across 15 trials for UnB Audio-Visual Quality (UnB-AVQ) Database 1. Labels:
V1 = VQM, V2 = PSNR, V3 = SSIM, A1 = VISQOL, A2 = PEAQ, L =
Linear, M = Minkowski, P = Power.

between the pairs of mean correlation values of the combination metrics in
the corresponding row and column. A cell value equal to “1” denotes that the
performance of the row combination is statistically superior to the performance
of the column combination, while a value “-1” denotes that the performance
of the row combination metric is statistically worse than the performance of
the column combination metric. Finally, a value of “0” denotes that both row
and column combination metrics are statistically equivalent, in other words,
the null hypothesis cannot be rejected.

From the results depicted in Table 6, the superior performance of the VQM-
VISQOL combination metric, over all combination metrics, is confirmed. How-
ever, the results also show that there is no significant difference between the
three models (linear, Minkowski, and power) for the VQM-VISQOL combina-
tion metric (t-Test results equal to “0”). Next, the performance of the PSNR-
VISQOL combination metric for the three models (linear, Minkowski, and
power) and of the VQM-PEAQ combination metric for the linear model are
superior to the performance of most of the other combination metrics. The
weakest performance corresponded to the combination metrics PSNR-PEAQ
and SSIM-PEAQ.
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Table 6: Results of two-tailed t-Test executed on the SCC values obtained
from 15 trials among the 18 FR audio-visual metrics for UnB Audio-Visual
Quality (UnB-AVQ) Database 1. Value “1” denotes row metric is superior to
the column metric. Value “-1” denotes row metric worse to the column metric.
Value of “0’ denotes both row and column metrics equivalent.

VQM PSNR SSIM
VISQOL PEAQ VISQOL PEAQ VISQOL PEAQ

L M P L M P L M P L M P L M P L M P

VQM

VISQOL

L 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PEAQ

L -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M -1 -1 -1 -1 0 0 -1 0 -1 0 1 1 0 1 0 1 1 1
P -1 -1 -1 -1 0 0 -1 0 -1 0 1 1 0 1 0 1 1 1

PSNR

VISQOL

L -1 -1 -1 -1 1 1 0 0 0 1 1 1 1 1 0 1 1 1
M -1 -1 -1 -1 0 0 0 0 0 1 1 1 0 1 0 1 1 1
P -1 -1 -1 -1 1 1 0 0 0 1 1 1 1 1 0 1 1 1

PEAQ

L -1 -1 -1 -1 0 0 -1 -1 -1 0 1 1 0 1 0 1 1 1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 0
P -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 -1 0 0 0

SSIM

VISQOL

L -1 -1 -1 -1 0 0 -1 1 -1 0 1 1 0 1 -1 1 1 1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 0 0 -1 0 0 1
P -1 -1 -1 -1 0 0 0 0 0 0 1 1 0 1 0 1 1 1

PEAQ

L -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 -1 0 -1 0 0 1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 -1 0 -1 0 0 0
P -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0

6 NR audio-visual metrics

The NR audio-visual metrics are obtained using 4 NR video quality met-
rics and 2 NR audio quality metrics. The chosen audio metrics are the orig-
inal and reduced versions of the single ended speech quality assessment met-
ric (SESQA and RSESQA) [24]. The SESQA metric, originally proposed for
speech quality, and its reduced version RSESQA, both have a good accuracy
performance for generic audio sequences [17]. Moreover, they are among the
few NR Speech/Audio metrics currently available in the literature. Meanwhile,
the chosen NR video metrics are: a blockiness-blurriness (BB) metric [25], the
blind/referenceless image spatial quality evaluator (BRISQUE) [26], the blind
image quality index (BIQI) [27], and the naturalness image quality evalua-
tor (NIQE) [28]. These metrics were selected due to their low computational
complexity and their good accuracy performance.

The outputs of an audio metric and a video metric (both NR) are com-
bined using all combination models described on Section 4. A total of 8 NR
combination metrics (4 video × 2 audio) were tested using the three combina-
tion models (linear, Minkowski, and power), what produced 24 different NR
audio-visual quality combination metrics. Table 7 shows the PCCs and SCCs
for all 24 NR audio-visual combination metrics tested on the data the audio-
visual UnB Audio-Visual Quality (UnB-AVQ) Database 1. Results show that
the BB-RSESQA combination metric presents the best performance. For this
metric, the power model has a slightly better performance (PCC = 0.81) when
compared to the other two models. There is no clear performance superiority
among the three models, but the power model has a slight advantage. Com-
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Table 7: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
NR audio-visual combination metrics – tested on UnB Audio-Visual Quality
(UnB-AVQ) Database 1.

Video Audio
Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

BB
RSESQA 0.793 0.797 0.778 0.792 0.810 0.807

SESQA 0.614 0.678 0.614 0.676 0.646 0.676

BRISQUE
RSESQA 0.541 0.494 0.544 0.504 0.537 0.453

SESQA 0.379 0.324 0.365 0.283 0.407 0.317

BIQI
RSESQA 0.549 0.511 0.582 0.571 0.511 0.478

SESQA 0.413 0.430 0.413 0.423 0.504 0.500

NIQE
RSESQA 0.541 0.494 0.543 0.506 0.540 0.456

SESQA 0.379 0.324 0.369 0.291 0.408 0.333

Table 8: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the individual NR audio and video metrics – tested on UnB Audio-Visual
Quality (UnB-AVQ) Database 1.

Audio Video
Single Metric RSESQA SESQA BB BRISQUE BIQI NIQE

PCC 0.432 0.132 0.614 0.317 0.306 0.317
SCC 0.380 0.280 0.670 0.290 0.328 0.289

binations metrics BRISQUE-SESQA and NIQE-SESQA presented the lowest
correlation values.

The correlation coefficients corresponding to the individual performance of
all audio and video metrics are shown at Table 8. These correlation values show
that the proposed combination models are able to significantly improve the
quality prediction. In fact, an analysis of all correlation coefficients indicates
that all combination models improved the performance, with the power model
presenting a slightly better integration capacity.

Again, two-tailed t-test was performed to determine whether the differences
in correlation values between pairs of combination metrics are statistically
significant. Here, we used the same parameters and methodology used for the
set of FR combination metrics. Figure 4 shows the box plot of the SCC values
for each of the 24 NR audio-visual combination metrics. T-test results for all
NR combination metrics are presented in Table 9.

Results in Table 9 confirm that the BB-RSESQA combination metric has
the best performance among all combination metrics. Yet, the differences in
correlation among the three combination models are not statistically signif-
icant. Surprisingly, using the Minkowski model for the BIQI-RSESQA com-
bination metric results in a very good performance, only inferior to the per-
formance of the BB-RSESQA and BB-SESQA combination metrics. Finally,
the weakest performance corresponds to the BRISQUE-SESQA and NIQE-
SESQA combination metrics.
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Fig. 4: Box plot of SCC values from 24 audio-visual NR metrics, across 15 trials
in UnB Audio-Visual Quality (UnB-AVQ) Database 1. Labels: V1 = BB, V2
= BRISQUE, V3 = BIQI, V4 = NIQE, A1 = RSESQA, A2 = SESQA, L =
Linear, M = Minkowski, P = Power.

Table 9: Results of two-tailed t-Test executed on the SCC values obtained
from 15 trials among the 24 NR audio-visual metrics in Database I. Value “1”
denotes row metric is superior to the column metric. Value “-1” denotes row
metric worse to the column metric. Value of “0’ denotes both row and column
metrics equivalent.

BB BRIS. BIQI NIQE
RSESQA SESQA RSESQA SESQA RSESQA SESQA RSESQA SESQA

L M P L M P L M P L M P L M P L M P L M P L M P
BB RSESQA L 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SESQA L -1 -1 -1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

M -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BRIS. RSESQA L -1 -1 -1 -1 -1 -1 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 1 1 0

M -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 0 1 1 1

P -1 -1 -1 -1 -1 -1 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 1 1 0

SESQA L -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1

M -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1

P -1 -1 -1 -1 -1 -1 0 -1 0 1 1 0 -1 -1 -1 0 0 -1 0 -1 -1 1 1 0

BIQI RSESQA L -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 0 1 1 1

M -1 -1 -1 0 -1 -1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1

P -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 0 1 1 1

SESQA L -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M -1 -1 -1 -1 -1 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

P -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

NIQE RSESQA L -1 -1 -1 -1 -1 -1 0 0 0 1 1 0 0 -1 0 0 0 0 0 0 0 1 1 0

M -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 0 1 1 1

P -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 0 1 1 0

SESQA L -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1

M -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1

P -1 -1 -1 -1 -1 -1 0 -1 0 1 1 0 -1 -1 -1 0 0 -1 0 -1 0 1 1 0

7 NTIA Audio-Visual Database Analysis

Both sets of FR and NR audio-visual combination metrics were tested on a
second database (NTIA Database), provided by The National Telecommuni-
cations and Information Administration (NTIA) [12]. This database contains
sequences with audio and video components at VGA resolution (640 × 480,
4:2:2, 30 fps). For each original sequence, there are 5 test conditions, which



14 Helard A. Becerra Martinez, Mylène C. Q. Farias
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(g) (h) (i)

(j)

Fig. 5: Sample frames of the original videos of the NTIA Database [12].

correspond to different combinations of audio (8, 32, 64 KB/s ) and video (100,
192, 250, 448, 500, 1000 KB/s) bitrates. Representative frames of the original
videos are shown in Figure 5. Each quality estimate obtained with all 18 FR
and 24 NR audio-visual combination metrics are compared to the 10 subjec-
tive scores of the NTIA Database, which were gathered from 10 experiments
performed in 6 different laboratories.

For the FR combination metrics, the average PCCs and SCCs obtained for
all 10 datasets are shown in Table 10. Notice that all metrics have much lower
correlation coefficients for this database, barely reaching 0.5. Although these
results present lower correlations than the ones obtained for the UnB-AVQ
Database 1, the VQM-VISQOL combination metric has a superior perfor-
mance, in agreement with what was observed in our previous analysis. In fact,
this combination has the best correlation values (between 0.52 and 0.54) for
all three models (linear, Minkowski, and power), with no combination model
standing out from the rest. Also, the PSNR-PEAQ and SSIM-PEAQ combi-
nations presented the lowest correlations values, in agreement with the results
observed for the UnB-AVQ Database 1.
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Table 10: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the 18 FR audio-visual metrics – tested on NTIA Audio-Visual Database [12].

Video Audio
Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

VQM
VISQOL 0.520 0.544 0.521 0.543 0.522 0.530
PEAQ 0.402 0.412 0.407 0.425 0.412 0.468

PSNR
VISQOL 0.425 0.434 0.447 0.454 0.449 0.464
PEAQ 0.265 0.283 0.298 0.293 0.301 0.372

SSIM
VISQOL 0.431 0.462 0.455 0.471 0.468 0.485
PEAQ 0.219 0.248 0.251 0.259 0.302 0.501

Table 11: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the individual FR audio and video metrics – tested on NTIA Audio-Visual
Database [12].

Audio Video
Single Metric VISQOL PEAQ VQM PSNR SSIM

PCC 0.285 0.132 0.241 0.203 0.242
SCC 0.351 0.250 0.253 0.209 0.245

The performance of the individual audio and video metrics are shown at
Table 11. It is interesting to notice that VISQOL has a slightly better perfor-
mance than the three other video quality metrics, although all the individual
metrics have a very good performance. The analysis of the correlation values
for the individual metrics and for their combination indicate that the three
combination models provide a similar accuracy performance.

To verify whether the differences in correlation values are statistically rel-
evant, a t-test was carried out. For this case, each of the 18 FR combination
metrics produced a set of 10 correlation scores, which resulted from the com-
parison of the predicted quality and the subjective score gathered in each of the
experiments. These correlation scores were grouped and used in a two-tailed
t-test (95% confidence interval). Figure 6 shows the box plot of the SCC val-
ues of each of the 18 FR combination metrics, tested on Database II. Table
12 shows the t-test results of all these FR combination metrics. The VQM-
VISQOL combination metric presents the best performance. Additionally, all
three models of the combination metrics PSNR-VISQOL and SSIM-VISQOL
exhibit a superior performance when compared to the other combination met-
rics. Moreover, the power model for the SSIM-PEAQ combination metrics also
present a good performance. In summary, although these results are in agree-
ment with the ones obtained for the UnB-AVQ Database 1 (see Section 5),
but they show a considerable drop in the correlation values.

The set of NR audio-visual metrics was also tested on the NTIA audio-
visual Database. Table 13 shows the average PCCs and SCCs for this database.
A simple analysis suggests that the BB-RSESQA and BB-SESQA combina-
tion metrics performed much better than the rest of the combination metrics
(PCC and SCC above 0.70). As for the combination models, a small advantage
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Fig. 6: Box plot of the SCC values for the 18 audio-visual FR combination
metrics, tested on the NTIA audio-visual Database. Labels: V1 = VQM, V2 =
PSNR, V3 = SSIM, A1 = VISQOL, A2 = PEAQ, L = Linear, M = Minkowski,
P = Power.

Table 12: Results of two-tailed t-Test executed on the SCC values obtained
from 10 subjective experiments (NTIA audio-visual Database) among the 18
FR audio-visual metrics. Value “1” denotes that the row metric is superior to
the column metric. Value “-1” denotes that the row metric worse to the column
metric. Value of “0’ denotes that both row and column metrics equivalent.

VQM PSNR SSIM
VISQOL PEAQ VISQOL PEAQ VISQOL PEAQ

L M P L M P L M P L M P L M P L M P

VQM

VISQOL

L 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

PEAQ

L -1 -1 -1 0 0 -1 0 0 -1 1 1 0 -1 -1 -1 1 1 -1
M -1 -1 -1 0 0 -1 0 0 0 1 1 0 0 -1 -1 1 1 -1
P -1 -1 -1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 -1

PSNR

VISQOL

L -1 -1 -1 0 0 0 0 0 0 1 1 0 0 0 -1 1 1 -1
M -1 -1 -1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 -1
P -1 -1 -1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 -1

PEAQ

L -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 1 0 -1
P -1 -1 -1 0 0 -1 0 0 -1 1 0 0 -1 -1 -1 1 1 -1

SSIM

VISQOL

L -1 -1 -1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 -1
M -1 -1 -1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 -1
P -1 -1 -1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0

PEAQ

L -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 -1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1
P -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

is observed for the Minkowski model. For this particular database, it is not
possible to determine which audio metric has the better performance, but it
is clear that the BB has the best performance among the video metrics. In a
more global analysis, these results are (surprisingly) better than the results
obtained for the FR metrics (see Table 10).

Analysing the individual performance of the metrics (Table 14), we observe
that there is no considerable difference between the performance of the audio
metrics RSESQA and SESQA. Regarding the video metrics, there is a sub-
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Table 13: Pearson and Spearman Correlation Coefficients (PCC and SCC)
of NR audio-visual combination metrics – tested on NTIA audio visual
Database [12].

Video Audio
Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

BB
RSESQA 0.735 0.740 0.754 0.756 0.758 0.760

SESQA 0.741 0.714 0.741 0.704 0.743 0.704

BRISQUE
RSESQA 0.412 0.430 0.465 0.433 0.449 0.404

SESQA 0.412 0.424 0.488 0.508 0.388 0.473

BIQI
RSESQA 0.476 0.479 0.527 0.460 0.468 0.454

SESQA 0.464 0.459 0.484 0.508 0.451 0.460

NIQE
RSESQA 0.387 0.403 0.448 0.431 0.452 0.381

SESQA 0.397 0.427 0.451 0.488 0.391 0.452

Table 14: Pearson and Spearman Correlation Coefficients (PCC and SCC) of
the individual NR audio and video metrics – tested on NTIA audio visual
Database [12].

Audio Video
Single Metric RSESQA SESQA BB BRISQUE BIQI NIQE

PCC 0.364 0.357 0.633 0.052 0.172 0.010
SCC 0.360 0.390 0.619 -0.001 0.123 -0.063

stantial gap between the performance of the BB metric and the performance
of the rest of the video quality metrics. In terms of integration capacity, all
three models presented a similar accuracy performance, with the Minkowski
model performing slightly better.

A two-tailed t-test was carried out in order to verify the significance of
the differences among the correlation values obtained by the NR audio-visual
metrics for the 10 subjective experiments from NTIA audio-visual Database.
A box plot of the SCCs scores for all 24 NR audio-visual metrics is depicted
in Figure 7. Table 15 presents the results of this t-test. Notice that the BB-
RSESQA and BB-SESQA combination metrics have a superior performance
for all three models (linear, Minkowski, and power). Moreover, among the
remaining NR metrics, for most of combination metrics, a better performance
is obtained for the linear model.

8 Conclusions

In this work, we studied the use of combination models to integrate single
audio and video quality estimates with the goal of predicting the overall audio-
visual quality. To obtain the audio and video quality estimates, we used a set
of mature and sufficiently tested audio and video quality metrics, considering
both FR and NR approaches. For the FR approach, we chose 3 video quality
metrics (VQM, PSNR, and SSIM) and 2 audio quality metrics (VISQOL and
PEAQ), while for the NR approach, we chose 4 video quality metrics (BB,
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Fig. 7: Box plot of the SCC values for the 24 audio-visual NR combination
metrics, tested on the NTIA Database. Labels: V1 = BB, V2 = BRISQUE,
V3 = BIQI, V4 = NIQE, A1 = RSESQA, A2 = SESQA, L = Linear, M =
Minkowski, P = Power.

Table 15: Results of two-tailed t-Test executed on the SCC values obtained
from 10 subjective experiments (NTIA audio-visual Database) among the 24
NR audio-visual metrics. Value “1” denotes row metric is superior to the col-
umn metric. Value “-1” denotes row metric worse to the column metric. Value
of “0’ denotes both row and column metrics equivalent.

BB BRIS. BIQI NIQE
RSESQA SESQA RSESQA SESQA RSESQA SESQA RSESQA SESQA

L M P L M P L M P L M P L M P L M P L M P L M P
BB RSESQA L 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SESQA L -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BRIS. RSESQA L -1 -1 -1 -1 -1 -1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0
M -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 0 0 -1 1 0 -1 0 -1 -1 1 -1
P -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 1 0

SESQA L -1 -1 -1 -1 -1 -1 0 1 1 0 1 1 -1 1 1 -1 1 1 0 1 0 0 1 0
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1
P -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 1 -1

BIQI RSESQA L -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
M -1 -1 -1 -1 -1 -1 -1 0 -1 -1 1 -1 -1 0 -1 -1 1 -1 -1 -1 -1 -1 1 -1
P -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 1 0

SESQA L -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1
P -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 1 -1

NIQE RSESQA L -1 -1 -1 -1 -1 -1 0 1 1 0 1 1 -1 1 1 -1 1 1 0 1 0 0 1 0
M -1 -1 -1 -1 -1 -1 -1 0 0 -1 1 0 -1 1 0 -1 1 0 -1 0 -1 -1 1 0
P -1 -1 -1 -1 -1 -1 0 1 1 0 1 1 -1 1 1 -1 1 1 0 1 0 0 1 0

SESQA L -1 -1 -1 -1 -1 -1 0 1 1 0 1 1 -1 1 1 0 1 1 0 1 0 0 1 0
M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1
P -1 -1 -1 -1 -1 -1 0 1 0 0 1 1 -1 1 0 -1 1 1 0 0 0 0 1 0

BRISQUE, BIQI, NIQE) and 2 audio quality metrics (RSESQA and SESQA).
The individual predictions of audio and video quality metrics were integrated
using three combination models: linear, Minkowski, and power. The audio and
video metrics were combined and this resulted in 18 FR and 24 NR audio-visual
quality metrics.

All 18 FR and 24 NR metrics were tested on two different audio-visual
databases. For the FR type of metric, a considerable difference of the cor-
relations is observed between the two databases under study (above 0.8 for
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UnB-AVQ Database I and 0.5 for NTIA audio-visual Database). Nevertheless,
the VQM-VISQOL combination metric presented the best results for both
databases. This combination metric performed well for all three combination
functions, with a small advantage of the power model. It was also observed
that metrics like PSNR, SSIM (video) and PEAQ (audio) did not perform very
well on any of the databases. Meanwhile, for the NR audio-visual metrics, the
BB-RSESQA and BB-SESQA combinations presented a superior performance
for both databases. These combination metrics presented an equivalent per-
formance for the three models (linear, Minkowski, and power). On the other
hand, video quality metrics like BRISQUE and NIQE did not perform well in
any of the databases.

Observing the performance of the individual metrics, we noticed that the
three combining models have a good integration capacity. It is worth pointing
out that, out of the three models, only the linear model was previously used
for combining audio and video objective scores. Therefore, one of the goals of
this work was to test different combination models and study their integration
capacity, in terms of accuracy performance. Although the results are promis-
ing, we believe an improvement in performance can be obtained by taking into
account the interaction between the human visual and auditory systems. Also,
better performance can be achieved using more complex combination models
(e.g. machine learning based algorithms). Finally, we need to perform tests us-
ing more diverse audio-visual databases, containing several types of audio and
video degradations. Unfortunately, up to our knowledge, this type of database
is not currently available.
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