
Journal of

Imaging

Article

On the Application LBP Texture Descriptors and Its
Variants for No-Reference Image Quality Assessment

Pedro Garcia Freitas 1,* ID , Luísa Peixoto da Eira 2, Samuel Soares Santos 2

and Mylene Christine Queiroz de Farias 2 ID

1 Department of Computer Science, University of Brasília, Brasília 73345-010, Brazil
2 Department of Electrical Engineering, University of Brasília, Brasília 73345-010, Brazil;

luisa.eira@gmail.com (L.P.d.E.); samuelss0906@gmail.com (S.S.S.); mylene@ieee.org (M.C.Q.d.F.)
* Correspondence: pedrogarcia@ieee.org

Received: 16 July 2018; Accepted: 26 September 2018; Published: 3 October 2018
����������
�������

Abstract: Automatic assessing the quality of an image is a critical problem for a wide range of
applications in the fields of computer vision and image processing. For example, many computer
vision applications, such as biometric identification, content retrieval, and object recognition, rely on
input images with a specific range of quality. Therefore, an effort has been made to develop image
quality assessment (IQA) methods that are able to automatically estimate quality. Among the possible
IQA approaches, No-Reference IQA (NR-IQA) methods are of fundamental interest, since they can
be used in most real-time multimedia applications. NR-IQA are capable of assessing the quality of an
image without using the reference (or pristine) image. In this paper, we investigate the use of texture
descriptors in the design of NR-IQA methods. The premise is that visible impairments alter the
statistics of texture descriptors, making it possible to estimate quality. To investigate if this premise is
valid, we analyze the use of a set of state-of-the-art Local Binary Patterns (LBP) texture descriptors in
IQA methods. Particularly, we present a comprehensive review with a detailed description of the
considered methods. Additionally, we propose a framework for using texture descriptors in NR-IQA
methods. Our experimental results indicate that, although not all texture descriptors are suitable
for NR-IQA, many can be used with this purpose achieving a good accuracy performance with the
advantage of a low computational complexity.

Keywords: texture descriptors; random forest regression; no-reference image quality assessment;
machine learning

1. Introduction

With the fast growth of imaging systems, a large number of digital images are being generated
every day. These images are often altered in the acquisition, transmission or compression stages.
These alterations can introduce distortions that may affect how human and machines understand
the image content. Therefore, multimedia and computer vision applications can really benefit
from automatic tools that are capable of assessing image quality. More specifically, image quality
assessment (IQA) methods can be used, for example, to determine optimal codec parameters [1],
find best perceptual coding schemes [2–6], and design efficient image watermarking algorithms [7,8].
Moreover, a recent report by Conviva R© shows that viewers are demanding a higher quality of delivered
multimedia content [9]. As users’ demands increase, the importance of designing automatic tools to
predict the quality of the visual stimuli also increases.

In the context of computer vision (CV), the quality of input images can affect the performance of
the algorithms. For instance, Kupyn et al. [10] have shown that object detection methods based on
deep learning approaches are greatly affected by the quality of the input images, as can be seen
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in the images depicted in Figure 1. Moreover, Dodge and Karam [11] demonstrated that deep
neural networks are susceptible to image quality distortions, particularly to blur and noise. Another
examples of known CV algorithms that are affected by the quality of the input images include finger
vein detection [12], biometric sensor spoofing [13], face recognition [14], video stream recognition
systems [15], deep learning reconstruction of magnetic resonance imaging (MRI) [16], and multi-view
activity recognition [17].

Figure 1. Object detection using YOLO [18] on the distorted (left) and pristine (right) images, taken
from GoPro [19] dataset. The detection effectiveness of YOLO is remarkably impaired by the quality of
the input image.

There are mainly two ways of measuring image quality. The first consists of performing
psychophysical experiments in which humans rate the quality of a set of images. These experiments
use standardized experimental methodologies to obtain quality scores for a broad range of images
processed with a diverse number of algorithms and procedures. Since these experiments use human
subjects, this approach is known as subjective quality assessment and it is considered the most accurate
method to estimate quality [20]. Unfortunately, subjective methods are expensive and time-consuming
and, therefore, are unsuitable for the most real-time applications. The second approach consists of
using computer algorithms to obtain a quality estimate. Since this does not require human subjects,
this approach is often entitled ‘objective quality assessment’. If a given objective method produces
results that are well correlated with the quality scores provided by human viewers, it can be used to
replace subjective methods.

Objective IQA methods are classified according to the amount of available reference information
they require. If the full reference image (pristine content) is required to estimate quality, the method
is classified as full-reference (FR). If the method only requires a limited amount of information
regarding the reference image, the method is a reduced-reference (RR) method. Since requiring
full or limited reference information can be a severe impediment for applications, one solution is
to use no-reference (NR) methods, which evaluate the quality of images without requiring any
information about the reference image. Objective methods can also be classified according to their
target applications. Methods designed for specific applications are known as distortion-specific (DS)
methods. DS methods can be designed to estimate the amount of sharpness [21–23], JPEG/JPEG2000
degradations [24,25], blockiness artifacts [26], contrast distortions [27], and enhancement [28] in an
image. Although DS methods can be useful for specific scenarios, they have limited applicability in the
real world. An alternative to DS methods is the distortion-generic (DG) methods, which do not require
a prior knowledge of the type of distortion and, therefore, are more adequate for diverse scenarios.
As expected, the design of DG methods is more challenging [29,30].

According to Hemami and Reibman [31], the design of IQA methods requires three major steps:
measuring, pooling, and mapping. Measuring refers to the extraction of a set of specific physical
attributes of the image. In other words, the method must compute a set of image features that describes
visual quality. Pooling refers to the combination of these measurements to create a link between
the image features and its quality. Mapping refers to the model of correspondence between the



J. Imaging 2018, 4, 114 3 of 41

result of the pooling and the subjective scores. Most existing works focus on the measuring stage,
where quality-aware features are designed to measure the level of image distortion. These features
are usually based on the natural scene statistics (NSS) [32–35], assuming that pristine natural images
have particular statistical properties that are disturbed by the distortions. NSS-based methods can
extract features in different domains, such as discrete cosine transform (DCT) domain [36–38], discrete
wavelet transform (DWT) domain [39–41], spatial domain [42], etc. More recently, convolutional neural
networks (CNN) have also been used in the design of NR-IQA methods [43–45]. CNN-based methods
use the direct correspondence between the hierarchy of the human visual system and the layers of a
CNN [46–50].

Another trend has been the use of saliency models (SM) [51–54]. SMs provide a measure of the
perceptual importance of each image region, which allows quality assessment methods to weight
the distortion according to region importance. In other words, quality and saliency are inherently
associated because both of them depend on how the human visual system perceives the content
and, consequently, on how (suprathreshold) distortions are detected [53]. Some investigators have
studied how to include saliency information into existing visual quality metrics in order to boost their
performance [52,55–58]. Nevertheless, most of these investigations are targeted at either FR or DS
image quality metrics.

In this paper, we investigate the suitability of texture descriptors to assess image quality.
This paper has inspiration on the studies of Ciocca et al. [59] and Larson and Chandler [60].
The premise is that visible impairments alter the statistics of texture descriptors, making it possible
to estimate image quality. To investigate this premise, we analyze the use of a set of state-of-the-art
texture descriptors in quality assessment methods. Additionally, we propose a framework to use
these texture descriptors for NR-IQA. The framework is based on supervised machine learning (ML)
approach that takes into account how impairments affect the statistics of the texture descriptors. These
statistics are used as feature vectors of a random forest regression algorithm that learns the predictive
quality model via regression [61].

The rest of this paper is organized as follows. Section 2 presents a brief review of the texture
descriptors investigated in this paper. Section 3 describes the proposed framework, the experimental
setup, all simulation results, and a discussion of these results. Finally, Section 4 presents the conclusions.

2. Texture Descriptors

Texture is a fundamental attribute of images, but there is no consensus on its definition. Petrou
and Garcia-Sevilla, for instance, define texture as a variation of the visual stimuli at scales smaller than
the scale of interest [62]. Davies associates texture to patterns with both randomness and regularity [63].
In this paper, texture refers to area characteristics that are perceived as combinations of basic image
patterns. These basic patterns present a certain regularity that is captured by statistical measures.

To characterize a texture, texture analysis methods identify and select a set of relevant texture
features. Over the years, several texture analysis methods have been proposed, using a variety of
approaches [62,63], including gray level run-length (GLRLM) [64], gray level co-occurrence matrices
(GLCM) [65], texture spectrum [66], and textons [67]. Among the popular texture operators is the
local binary patterns (LBP) [68], which describes the local textures of an image by performing simple
operations. More specifically, the textures are labeled according to the relationships between each pixel
and its neighbors. One of the advantages of the LBP descriptor is that it unifies traditional texture
analysis models.

There are several modifications of the LBP operator [69,70]. Most of them try to improve the
performance of the LBP in specific applications (e.g., texture classification, face recognition, object
detection, etc.). However, few works have investigated the performance of the LBP (and its variants)
in specific applications. This paper is inspired by the work of Hadid et al. [69], who compared the
performance of 13 different LBP-based methods in gender recognition applications. Our focus is to test
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the performance of LBP-based descriptors in IQA applications. This section describes the basic LBP
descriptor and the state-of-the-art LBP variants considered in this work.

2.1. Basic Local Binary Patterns (LBP)

The Local Binary Pattern (LBP) is arguably one of the most powerful texture descriptors. It was
first proposed by Ojala et al. [68] and it has since been proven to be an effective feature extractor for
texture-based problems. The traditional LBP descriptor takes the following form:

LBPR,P(Ic) =
P−1

∑
p=0

S(Ip − Ic)2p, (1)

where

S(t) =

{
1, if t ≥ 0

0, otherwise.
(2)

In Equation (1), Ic = I(x, y) is an arbitrary central pixel at the position (x, y) and Ip = I(xp, yp) is
a neighboring pixel surrounding Ic, where

xp = x + R cos
(

2π
p
P

)
(3)

and
yp = y− R sin

(
2π

p
P

)
. (4)

P is the total number of neighboring pixels Ip, sampled with a distance R from Ic. Figure 2 illustrates
examples of symmetric samplings with different numbers of neighboring points (P) and radius
(R) values.

R=1

(a) R = 1, P = 8

R=2

(b) R = 2, P = 8

R=2

(c) R = 2, P = 16

Figure 2. Circularly symmetric P neighbors extracted from a distance R.

Figure 3 illustrates the steps for applying the LBP descriptor on a single pixel (Ic = 8) located
in the center of a 3× 3 image block, as shown in the bottom-left of this figure. The numbers in the
yellow squares of the block represent the order in which the descriptor is computed (counter-clockwise
direction starting from 0). In this figure, we use a unitary neighborhood radius (R = 1) and eight
neighboring pixels (P = 8). After calculating S(t) (Equation (2)) for each neighboring pixel Ip (0 ≤ p ≤
7), we obtain a binary output for each Ip, as illustrated in upper-left position of Figure 3. The black
circles correspond to ‘0’ and white circles to ‘1’. These binary outputs are stored in a binary format,
according to their position (yellow squares). The LBP output for Ic is the decimal number, obtained
by converting this binary number. After the LBP is applied to all pixels in an image, we get a set of
labels that compose the LBP channel. Figure 4 shows examples of LBP channels for the image ‘Baboon’,
obtained using different radius values and different numbers of neighbors.
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Figure 3. Calculation of LBP labels.

REF
R = 1 R = 2 R = 3

P=4 P=8 P=4 P=8 P=16 P=4 P=8 P=16 P=24

Figure 4. Reference image and its correspondent Local Binary Pattern (LBP) channels computed using
three different radius (R) values.

When an image is rotated, the Ip sampled values move along the perimeter of the circumference
around Ic, generating a circular shift in the binary number generated. As a consequence, a different
decimal LBPR,P(Ic) value is obtained. To remove this effect, we can use the following rotation invariant
(ri) descriptor, defined as:

LBPri
R,P(Ic) = min{ROTR(LBPR,P(Ic), k)}, (5)

where k = {0, 1, 2, · · · , P− 1} and ROTR(x, k) is the circular bit-wise right shift descriptor that shifts
the tuple x by k positions.

Due to the crude quantization of the angular space and to the occurrence of specific frequencies in
individual patterns, LBPR,P and LBPri

R,P descriptors do not always provide a good discrimination [71].
To improve the discriminability, Ojala et al. [68] proposed a ‘uniform’ descriptor that captures
fundamental pattern properties:

LBPu
R,P(Ic) =


P−1
∑

p=0
S(Ip − Ic), if U(LBPri

R,P) ≤ 2,

P + 1, otherwise,
(6)

where

U(LBPP,R) = ∆(IP−1, I0) +
P−1

∑
p=1

∆(Ip, Ip−1), (7)

and
∆(Ix, Iy) = |S(Ix − Ic)− S(Iy − Ic)|. (8)

In addition to a better discriminability, the uniform LBP descriptor has the advantage of generating
fewer distinct LBP labels. While the ‘nonuniform’ descriptor (Equation (1)) produces 2P different
output values, the ‘uniform’ descriptor produces only P + 2 distinct output values. Finally, once the



J. Imaging 2018, 4, 114 6 of 41

LBP mask is calculated using any the LBP approaches described above, we compute its histogram.
Next, we present some of the LBP variants that have been proposed to improve the robustness and
discriminability of the original descriptor.

2.2. Local Ternary Patterns (LTP)

The LTP operator is an extension of the LBP descriptor that assumes up to 3 coded values
({−1, 0, 1}). This is achieved by changing the step function S in the following manner:

Ŝ(t) =


1, t ≥ τ,

0, −τ < t < τ

−1, t < −τ,

(9)

where τ is a threshold that determines how sharp an intensity change should to be considered as an
edge. After computing the ternary codes, each ternary pattern is split into two codes: a positive (upper
pattern) and a negative (lower pattern) codes, which are treated as two separate channels.

Figure 5 illustrates the basic feature extraction procedure for a single pixel using a LTP
descriptor. The numbers in yellow squares represent the order in which the step function is computed
(Equations (2) and (9)). In this example, we consider an unitary neighborhood radius (R = 1), eight
neighboring pixels (P = 8), and a threshold τ equal to five. While in the LBP the binary code takes
only two values (0 or 1, represented by the colors black and white), the LTP descriptor generates three
possible values (see Equation (9)) that are represented by the colors black (Ŝ(t) = 1), white (Ŝ(t) = 0),
and red (Ŝ(t) = −1).
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Σ
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Figure 5. Illustration of the basic Local Ternary Pattern descriptor.

We split the LTP code into two LBP codes (with only positive values). First, we create the upper
pattern by converting the negative codes to zero. Next, we create the lower pattern by setting the
positives values to zero, by converting the negative values to positive. Comparing Figure 5 and
Figure 3, we notice that the LTP descriptor generates two texture information maps that are two
separate LBP channels. Finally, we compute independent histograms and similarity measures for each
of these maps and combine these histograms to generate the feature vector.

2.3. Local Phase Quantization (LPQ)

A limitation of the LBP is its sensitivity to blur. To tackle this problem, the local phase
quantization (LPQ) descriptor was proposed [72]. The LPQ descriptor performs a quantization
of the Fourier transform phase in local neighborhoods. Assuming that G(u) and F(u) are the discrete
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Fourier transforms (DFT) of the blurred g(z) and original f (z) images, which are related by the
following equation:

G(u) = F(u) · H(u). (10)

Assuming that h(x) = h(−x), its DFT is always real and the phase assumes only two
values, namely:

∠H(u) =

{
0, H(u) ≥ 0

π, otherwise.
(11)

For the LPQ descriptor, the phase is computed in the local neighborhood Nz, for each pixel
position of f (z). The local spectrum is computed with the following equation:

F(u, x) = ∑
y∈Nz

f (y) · wR(y− x) · e−j2πuy, (12)

where u is the frequency and wR is a window given by:

wR(x) =

{
1, |x| < NR

2

0, otherwise.
(13)

The local Fourier coefficients are computed at four frequencies for each pixel position, i.e.,

F(x) = [F(u1, x), F(u2, x), F(u3, x), F(u4, x)] , (14)

where u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T . In these cases, a is sufficiently small to
satisfy H(ui) > 0.

The phase of the Fourier coefficients is given by the signs of the real and imaginary parts of each
component F(x), computed by scalar quantization:

qj =

{
1, gj ≥ 0

0, otherwise,
(15)

where gj is the j-th component of G(x) = [Re{F(x)}, Im{F(x)}]. After generating the binary
coefficients qj, the feature vector is generated using the same technique used in the LBP.

2.4. Binarized Statistical Image Features (BSIF)

The binarized statistical image features (BSIF) is a descriptor proposed by Kannala and Rahtu [73],
which does not use a manually predefined set of filters. Instead, it learns the filters using the statistics of
natural images. BSIF is among the best texture descriptors for face recognition and texture classification
applications [69,73]. Differently from previous descriptors, which operate on pixels, BSIF works on
patches of pixels. Given an image patch X of size l × l pixels and a linear symmetric filter Wi of the
same size, the filter response si is obtained computing the following expression:

si = ∑
u,v

Wi(u, v)X(u, v) = wT
i x, (16)

where vectors w and x contain the pixels of Wi and X, respectively. The binarized feature is acquired
using the following function:

bi =

{
1, sj > 0

0, otherwise.
(17)
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The filters Wi are learned via independent component analysis (ICA). The binarized features bi
are aggregated following the same procedure described for generating the LBP labels. The descriptive
features are obtained by computing the histogram of the aggregated data.

Similarly to the LBP, which generates LBP channels, the BSIF generates coded images. These coded
images are the set of labels generated after the binarized features are computed using Equation (17)
and aggregated using Equation (1). The aggregation of BSIF results is based on a selected number of
bits, instead of the number of neighbors of the labeled pixel. The labeling depends on the relationship
between the patch size l and the number of binarized features bi. Figure 6 shows the BSIF coded
images corresponding to the same reference using different BSIF parameters. As can be seen in this
figure, the textured information depends on the patch size l and on the number of bits. The number
of bits is less or equal l2 − 1. This is the reason why the second column does not contain BSIF coded
images for 9, 10, 11, or 12 bits. Figure 6 shows that the choice of the number of bits and patch sizes is
important for texture analysis algorithms. Therefore, multiscale approaches that incorporate several
combinations of these parameters are interesting [74–77].

HH
HHHbits

size
3×3 5×5 7×7 9×9 11×11 13×13 15×15 17×17

5

6

7

8

9 –

10 –

11 –

12 –

Figure 6. BSIF code images at different scales.

2.5. Rotated Local Binary Patterns (RLBP)

For some applications, image rotation affect the LBP results because of the fixed order of its
weights. Since weights are distributed in a circular way, the effect of rotation can be eliminated by
rotating the weights by the same angle. When the rotation angle is not known, an adaptive arrangement
of weights, based on the locally computed reference direction, can be used. Mehta and Egiazarian [78]
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proposed the rotated local binary (RLBP) descriptor, which considers that, if an image is rotated,
the descriptor should be rotated by the same angle.

The RLBP makes the LBP invariant to rotation by circularly shifting the weights according to the
dominant direction (D). In a neighborhood of a pixel Ic, D is the index of the neighbor whose difference
to Ic is maximum, i.e.,

D = argmax
p∈{0,1,··· ,P−1}

|Ip − Ic|. (18)

Since D is taken as a reference, the weights are assigned with respect to it. The RLBP descriptor is
computed as follows:

RLBPR,P =
P−1

∑
p=0

S(Ip − Ic)2(p−D mod P), (19)

where i (mod j) is the remainder of the division of i by j.
Figure 7 depicts the effect of a rotation on LBP and RLBP descriptors. Notice that the LBP

changes for a rotation. The red color indicates pixels with values above the threshold, while the
yellow color indicates pixels with the maximum difference to Ic (D). The position D takes the smallest
weight, while the other positions get weights that correspond to circular shifts with relation to D.
From Figure 7g, we notice that the weight corresponding to D is the same both for the original and
rotated images, even when these pixels are at different angles. Therefore, the RLBP values for two
rotated neighborhoods are the same.

Figure 7. Rotation effect on LBP and RLBP descriptors: (a) original image and its rotated version,
(b) Illustration of the neighbors rotation for the same pixel ‘63’, (c) Thresholded neighbors, values above
threshold are shown in red color, (d) The weights corresponding to the thresholded neighbors, (e) LBP
values, (f) Thresholded neighbors for RLBP with reference denoted in yellow color, (g) The weights of
the thresholded neighbors, (h) The RLBP values for the original and rotated image is same [79].

Figure 8 shows the effect of rotation after generating the LBP and RLBP channels. The first row
shows the LBP and RLBP maps of the original images and their corresponding histograms. The second
row shows the same information for a 90 degrees rotated version of the original image. To compare
the differences between the LBP and RLBP histograms, before and after the rotation, we use three
statistical divergences measures: Kullback–Leibler divergence (KLD) [80], Jensen–Shannon divergence
(JSD) [81], and chi-square distance (CSD) [82]. The KLD, JSD, and CSD of the LBP histogram are
2.92× 10−2, 6.96× 10−3, and 2.11× 102, respectively. These divergences for the RLBP histograms are
2.06× 10−4, 5.12× 10−5, and 1.57, respectively. Therefore, the order of magnitude of the LBP statistical
divergences is two times higher than for the RLBP statistical divergences.
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Input
LBP RLBP

Map Histogram Map Histogram

Figure 8. Effect of rotation on LBP and RLBP information.

2.6. Complete Local Binary Patterns (CLBP)

The LBP descriptor considers only the local differences of each pixel and its neighbors.
The complete local binary patterns consider both signs (S) and magnitude (M) of the local differences,
as well as the original intensity value of the center pixel [83]. Therefore, the CLBP feature is a
combination of three descriptors, namely CLBPS, CLBPM, and CLBPC. Figure 9 illustrates the
computation of the CLBP feature.

Image

Local

Difference

Center Gray

Level

LDSMT

S

M

CLBP

S

CLBP

M

CLBP Feature

CLBP

C

Figure 9. Framework of CLBP descriptor [83].

The CLBPS and CLBPM components are computed using the local difference sign-magnitude
transform (LDSMT), which is defined as:

LDSMTp = sp ·mp, (20)

where sp = S(Ip − Ic) and mp = |Ip − Ic|. The sp is the sign descriptor used to compute CLBPS,
i.e., CLBPS is the same as the original LBP and it is used to code the sign information of the local
differences. CLBPM is used to code the magnitude information of local differences:

CLBPM =
P−1

∑
p=0

thresh(mp, c) · 2p, (21)

where

thresh(x, c) =

{
1 x ≥ c,

0 otherwise.
(22)
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In the above equation, c is a threshold set as the mean value of the input image I. Finally,
the CLBPC is used to code the information of original center gray level value:

CLBPC = thresh(Ic, c). (23)

The three descriptors, CLBPS, CLBPM, and CLBPC, are combined. Individual histograms are
computed and concatenated. This joint histogram is used as a CLBP feature.

2.7. Local Configuration Patterns (LCP)

Local configuration patterns (LCP) is a rotation invariant image descriptor proposed by Guo et al.,
which is more discriminative [84]. LCP decomposes the image information into two levels: local
structural information and microscopic configuration information. The local structural information is
composed by LBP features, while the microscopic configuration (MiC) information is determined by
the image configuration and by the pixel-wise interaction relationships.

To model the image configuration, we estimate the optimal weights, which are associated with
the neighboring pixels, to linearly reconstruct the central pixel intensity for each pattern type. This can
be expressed by the following equation:

E(a0, a1, · · · , aP−1) = |Ic −
P−1

∑
p=0

ap Ip|, (24)

where Ic and Ip denote the intensity values of the center pixel and neighboring pixels, ap are weighting
parameters associated with Ip, and E(a0, a1, . . . , aP−1) are the reconstruction errors with respect to the
model parameters. To minimize the reconstruction errors, the optimal parameters for each pattern are
determined by a least squares estimation.

Suppose the occurrence of a particular pattern type j is f j. There are f j pixels in the image with
the pattern j. We denote intensities of those f j pixels as cj,i, where i = 0, 1, . . . , f j − 1. These intensities
cj,p are organized into a vector:

cj =


cj,0
cj,1

...
cj, f j−1

 . (25)

We denote the intensities of neighboring pixels with respect to each cj,i as vi,0, . . . , vi,P−1, which are
organized into a matrix with the following form:

Vj =


v0,0 v0,1 · · · v0,P−1

v1,0 v1,1 · · · v1,P−1
...

...
. . .

...
v f j−1,0 v f j−1,1 · · · v f j−1,P−1

 . (26)

To minimize the reconstruction error (Equation (24)), the unknown parameters ap are organized
as a vector:

Aj =


a0

a1
...

aP−1

 , (27)

and the optimal parameters are determined by solving the following equation:

Aj =
(

Vj
>Vj

)−1
Vj
>cj. (28)
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After determining Aj, we apply the Fourier transform to the estimated parameter, which can be
expressed by:

Hj(k) =
P−1

∑
p=0

Aj(p)e
−i2πkp

P , (29)

where Hj(k is the k-th element of Hj and Aj(p) is the p-th element if Aj. The magnitude part of each
element of the vector Hj is taken as the resulting MiC, which is defined by:

|Hj| =
[
|Hj(0)|, |Hj(1)|, . . . , |Hj(P− 1)|

]
. (30)

The LCP feature is formed by both pixelwise interaction relationships and local shape information,
which is expressed as:

LCP = [[|H0|; O0], [|H1|; O1], . . . , [|HP−1|; OP−1]] , (31)

where |Hj| is computed using Equation (30) with respect to the j-th pattern and Oj is the number of
occurrences of the j-th LBP label.

2.8. Opposite Color Local Binary Patterns (OCLBP)

To combine both texture and color information into a joint descriptor, Maenpaa [85] proposed
to use the Opponent Color Local Binary Pattern (OCLBP) descriptor. This descriptor improves the
descriptor proposed by Jain and Healey [86] by substituting the Gabor filter with a variant of the LBP
descriptor, decreasing its computational cost. The OCLBP descriptor uses two approaches. In the first,
the LBP descriptor is applied, individually, on each color channel, instead of being applied only on a
single luminance channel. This approach is called ‘intra-channel’ because the central pixel and the
corresponding sampled neighboring points belong to the same color channels. In the second approach,
called ‘inter-channel’, the central pixel belongs to a color channel and its corresponding sampled
neighboring points belong to another color channel. More specifically, for an OCLBPMN descriptor,
the central pixel is positioned in the channel M, while the neighborhood is sampled in the channel
N. For a three-channel color space, such as RGB, there are six possible combinations of channels:
OCLBPRG, OCLBPRG, OCLBPRB, OCLBPRB, OCLBPGB, and OCLBPGB.

Figure 10 depicts the sampling approach of OCLBP when the central pixel is sampled in R channel.
From this figure, we can notice that two combinations are possible: OCLBPRG (left) and OCLBPRB
(right). In OCLBPRG, the gray circle in the red channel is the central point, while the green circles in
the green channel correspond to ‘0’ sampling points and the white circles correspond to ‘1’ sampling
points, respectively. Similarly, in the OCLBPRB the blue circles correspond to ‘0’ sampling points and
the white circles correspond to ‘1’ sampling points, respectively.

Figure 10. Sampling scheme for the OCLBPRG and OCLBPRB descriptors.
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After computing the OCLBP descriptor for all pixels, a total of six texture channels are
generated. As depicted in Figure 11, three LBP intra-channels (LBPR, LBPG, and LBPB) and three
LBP inter-channels (OCLBPRG, OCLBPRB, and OCLBPGB) are generated. Although all possible
combinations of the opposite color channels allow six distinct channels, we observed that the symmetric
opposing pairs are very redundant (e.g., OCLBPRG is equivalent to OCLBPGR). Due to this redundancy,
only the three more descriptive inter-channels are used.

(a) Original (b) LBPR (c) LBPG (d) LBPB (e) OCLBPRG (f) OCLBPRB (g) OCLBPGB

Figure 11. Original images and their output channels, computed using the OCLBP descriptor.

2.9. Three-Patch Local Binary Patterns (TPLBP)

Wolf et al. [87] proposed a family of LBP-related descriptors designed to encode additional types
of local texture information. While variants of LBP descriptor use short binary strings to encode
information about local micro-texture pixel-by-pixel, the authors considered capturing information
which is complementary to that computed pixel-by-pixel. These patch-based descriptors are named
Three-Patch LBP (TPLBP) and Four-Patch-LBP (FPLBP).

TPLBP considers a w× w patch centered on a pixel and and S additional patches distributed
uniformly on a ring of radius r around it, as illustrated in Figure 12. For an angle α, we get a set of
neighboring patches along a circle and compare their values with those of the central patch. More
specifically, the TPLBP is given by:

TPLBPr,S,w,α(p) =
S

∑
i=0

f(d(Ci, Cp)− d(Ci+α mod S, Cp)) · 2i, (32)

where

f(t) =

{
1, if t ≥ τ,

0, otherwise.
(33)

The function d(x, y) is any distance function between two patches under a vector representation.
Examples of d(x, y) are Manhattan [88], Mahalanobis [89], Minkowski [90], etc. The parameter τ is
slightly larger than zero to provide some stability in uniform regions.
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Figure 12. The Three-Patch LBP code with α = 2, w = 3 and S = 8 [87].

2.10. Four-Patch Local Binary Patterns (FPLBP)

In FPLBP, two rings centered on the pixel are used, instead of only one ring as used in TPLBP.
As depicted in Figure 13, two rings of radii r1 and r2 (centered in the central pixel) are considered,
with S patches of size w× w equally distributed on each ring, positioned α patches away along the
circle. We compare the two center symmetric patches in the inner ring with the two center symmetric
patches in the outer ring. The bit in each coded pixel is set according to which of the two pairs is being
compared. Therefore, the FPLBP code is computed as follows:

FPLBPr,S,w,α(p) =

S
2

∑
i=0

f(d(C1,i, C2,i+α mod S)− d(C1,i+S/2, C2,i+S/2+α mod S)) · 2i. (34)

Figure 13. The Four-Patch LBP code with α = 1, w = 3 and S = 8 [87].

2.11. Multiscale Local Binary Patterns (MLBP)

The Multiscale local binary pattern (MLBP) is an extension of the LBP, designed with the goal
of extracting image quality information [91]. A block diagram of the MLBP descriptor is depicted
in Figure 14 and it is computed as follows. First, we generate several LBP channels, by varying the
parameters R and P and performing a symmetrical sampling. For the smallest possible radius, R = 1,
there are two possible P values that produce rotational symmetrical sampling (P = 4 and P = 8). When
R = 2, there are three possible P values (P = 4, P = 8, and P = 16). In general, for a given radius R, there
is a total of R + 1 distinct LBP channels.
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R=1

HR=1,P=4

HR=1,P=8

R=1,P=8

R=1,P=4

HR=1,P=4 HR=1,P=8

R=1 R=2 R=3

H1
HR=1,P=4 HR=1,P=8

H2
HR=2,P=4 HR=2,P=8 HR=2,P=16

H3
HR=3,P=4 HR=3,P=8 HR=3,P=16 HR=3,P=24

(a) (b)

Figure 14. Feature extraction steps. (a) Multipoint LBP sampling. (b) Multiple histogram generation
from LBP.

Figure 14a depicts the feature extraction for R = 1. The unitary radius generates only two distinct
symmetrical patterns (P = 4 and P = 8). Each pattern generates a distinct LBP channel (see Figure 4).
For a radius R, LBP maps are generated and combined:

LR = {LBPu
R,4, LBPu

R,8, LBPu
R,16, · · · , LBPu

R,8R}, (35)

where LBPu
R,P is computed according to Equation (6) and LR contains R + 1 elements. From these LBP

channels, the texture features are obtained by computing the histogram of each member of LR:

HR,P = [hR,P(l1), hR,P(l2), · · · , hR,P(lP+2)] , (36)

where
hR,P(li) = ∑

x,y
δ(LBPu

R,P(x, y), i), (37)

and

δ(s, t) =

{
1 s = t,

0 otherwise.
(38)

In the above equations, (x, y) indicates the position of a given point of LBPu
R,P and li is the i-th

LBP label. Notice that we are using ‘uniform’ LBP descriptors (Equation (6)) since their histograms
provide a better discrimination of the texture properties.

To obtain the feature vector, we vary the radius, compute all possible symmetric LBP patterns
and their histograms, as illustrated in Figure 14b. For a radius R, we generate a vector of histograms
by concatenating all individual LBP histograms:

HR = HR,4 ⊕ HR,8 ⊕ HR,16 ⊕ · · · ⊕ HR,8R, (39)

where ⊕ denotes the concatenation descriptor.
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The steps for computing the multiscale LBP histogram are summarized in Figure 15. For R = N,
the final feature vector is generated by concatenating the histograms of the LBP channels with radius
values smaller than N:

x = xN = H1 ⊕ H2 ⊕ H3 ⊕ · · · ⊕ HN , (40)

where R = N is the maximum radius value and xN is the feature vector used to compute the histogram.

Original

Image

R=1

R=2

R=N

LBP

R=1,P=4

LBP

R=1,P=8

LBP

R=2,P=4

LBP

R=2,P=8

LBP

R=2,P=16

LBP

R=N,P=4

LBP

R=N,P=8

LBP

R=N,P=8N

...

...

H

R=1,P=4

H

R=1,P=8

H

R=2,P=4

H

R=2,P=8

H

R=2,P=16

H

R=N,P=4

H

R=N,P=8

H

R=N,P=8N

H

1

H

2

H

n

...

Multiscale LBP

Histogram

SVR

Figure 15. Feature extraction using MLBP histograms.

2.12. Multiscale Local Ternary Patterns (MLTP)

In general, the LTP threshold τ is adjusted for the target application. Anthimopoulos et al. [92]
demonstrated that the τ values correspond to the gradient of the image. The choice of τ may affect
the discrimination of edge and non-edge pixels, which is an important step in the texture analysis.
We propose [93] an optimal set of thresholds to be used in the multilevel edge description operation,
which make it possible to cluster gradient PDFs. The procedure is described as follows. First, the image
gradients are fit using an exponential distribution:

PDFe(z) = λe−λz, (41)

where λ is the rate parameter of the distribution. Then, the average value of the image gradient
λ−1 is computed. The inverse cumulative distribution function of PDFe is, then, obtained using the
following equation:

Fe(∆i) = λ−1 ln(1− ∆i), (42)

where:
∆i =

i
L + 1

, ∆i ∈ [0, 1) (43)

and i ∈ {1, 2, · · · , L} and L is the number of levels. To select a threshold, we take

τi = Fe(∆i) (44)

for equally spaced values of ∆i.
The feature extraction process is illustrated in Figure 16. We decompose the image into LTP

channels. These channels are generated by varying the τ values according to Equations (42)–(44). Since
for a single image the LTP descriptor produces two channels, for L numbers of τi, 2L LTP channels
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are produced. For example, in Figure 17, we use L = 4, generating eight distinct LTP channels. In the
proposed LTP approach, instead of computing the differences between tc and its neighbors on the
grayscale image, we take the maximum difference on the R, G, or B channels.

I
H

1

up

h

1

up

H

1

lo

h

1

lo

H

2

up

h

2

up

H

2

lo

h

2

lo

τ1

τ2

+ x

C

1

up

C

1

lo

C

2

up

C

2

lo

Figure 16. Illustration of process of extracting the feature vector x with L = 2.

REF τ1 τ2 τ3 τ4
Up Bottom Up Bottom Up Bottom Up Bottom

Figure 17. The reference image and its upper and lower patterns generated using the Local Ternary
Pattern (LTP) descriptor with four different threshold values.

After the aforementioned steps are completed, we obtain a set of LTP channels with 2 × L
elements: {Cup

1 , Clo
1 , Cup

2 , Clo
2 , · · · , Cup

L , Clo
L } . In this set, the subscript index corresponds to the i-th

τ value, while the superscript index indicates whether the element is an upper (up) or lower (lo)
pattern. For each LTP channel Cj

i , where j ∈ {up, lo}, we compute the corresponding LTP histogram

H j
i . These histograms are used to build the feature vector. If we simply concatenate these histograms,

we generate a feature vector with a 2P × 2× L dimension. Depending on the L and P parameters,
the number of features can be very high, what has a direct impact on the performance of the
proposed algorithm.

In order to limit the number of dimensions, the number of bins of the LTP histograms is reduced
according to the following formula:

kj
i =

⌊
max H j

i −min H j
i

n

⌉
, (45)

where b·e is the operation of rounding to the nearest integer, n defines the number of equal-width
bins in the given range, and kj

i is the reduced number of bins of histogram H j
i . After this quantization,

we acquire a set of quantized histograms {hup
1 , hlo

1 , hup
2 , hlo

2 , · · · , hup
L , hlo

L }. This new set is used to
generate the feature vector associated with the image I. More specifically, the feature vector x is
generated by concatenating the quantized histograms hj

i , i.e.,

x̆ = hup
1 ⊕ hlo

1 ⊕ hup
2 ⊕ hlo

2 ⊕ · · · ⊕ hup
L ⊕ hlo

L , (46)

where ⊕ is the concatenation descriptor and x is the feature vector.
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2.13. Local Variance Patterns (LVP)

The Local Variance Pattern (LVP) is an extension of the LBP descriptor proposed in this work.
This descriptor was developed specifically for quality assessment tasks. The LVP descriptor computes
the texture local energy using the following formula:

LVPu
R,P(Ic) =

⌊
P ·VR,P(Ic)− [LBPR,P(Ic)]

2

P2

⌉
, (47)

where:

VR,P(Ic) =
P−1

∑
p=0

[
S(Ip − Ic) · 2p]2 . (48)

LVP descriptor estimates the spread of the texture local energy. By measuring the texture
energy, the LVP descriptor is able to estimate the effect that specific impairments have on the
texture. For example, a Gaussian blurring impairment decreases the local texture energy, while a noise
impairment increases it. Figure 18 shows a comparison of the steps used to extract texture information
using the LBP and LVP descriptors, assuming that R = 1 and P = 8. The numbers in the yellow squares
represent the order in which the steps are computed. The LBP descriptor generates two possible values
(see Equation (2)), which are represented by the colors white (S(t) = 1) and black (S(t) = 0). Next,
we use Equation (6) to compute the LBP label and Equation (47) to compute the LVP label.
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Figure 18. Pattern extraction process for a given pixel using LBP and LVP descriptors with R = 1, P = 8,
tc = 35, and tp = {71, 32, 91, 103, 21, 10, 34, 13}.

After computing the LBP and LVP labels for all pixels of a given image, we obtain two channels
for each image. These channels, CLBP and CLVP, correspond to the LBP and LVP patterns, respectively.
Examples of these channels are shown in Figure 19. The first row of this figure shows the unimpaired
reference image and three impaired images, degraded with different types of distortions. The second
and third rows show the CLBP and CLVP channels for each image, respectively. Observing the CLBP and
CLVP patterns in Figure 19, we notice that textures are affected differently by the different impairments.
Comparing the CLBP channels corresponding to the noisy, blurry, and jpeg2k compressed images
(2nd line of Figure 19), we can notice that they are very different among themselves. The CLBP
channels corresponding to the blurry and jpeg2k images are also very different from the CLBP channel
corresponding to the reference (unimpaired) image. Nevertheless, the CLBP channel corresponding to
the noisy and reference images are visually similar. This similarity makes it difficult to discriminate
between unimpaired and impaired images, what affects the quality prediction. Nevertheless, the CLVP
channels clearly show the differences between impaired and reference images, as can be seen in the
3rd line of Figure 19.
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REFERENCE BLUR NOISE JPEG2K
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Figure 19. Reference image, its impaired versions, and their respective LBP and LVP maps (CLBP

and CLVP).

2.14. Orthogonal Color Planes Patterns (OCPP)

The Orthogonal Color Planes Pattern (OCPP) descriptor extends the LBP to make it more sensitive
to color and contrast distortions. Consider a pixel τc = I(x, y, z) of a tri-dimensional (XYZ) color image
I. This image can be decomposed into a set of individual XY planes stacked along the Z-axis, a set
of YZ planes stacked along the X-axis, or a set of XZ planes stacked along the Y-axis. In this work,
we concatenate the LBP descriptors corresponding to the XY, XZ, and YZ planes to build an orthogonal
color planes pattern (OCPP) texture descriptor.

As can be noticed from the aforementioned formulation, the LBP descriptor corresponding to the
XY, XZ, and YZ planes can be computed independently to generate the thee LBP maps: LBPXY, LBPXZ,
and LBPYZ. But, since the spatial dimensions of the XY, XZ, and YZ planes are generally different,
the radius (RX, RY, and RZ) and the number of sampled points (PXY, PXZ, and PYZ) corresponding
to each of the LBP maps can vary. Figure 20a illustrates how the points along the tri-dimensional
HSV color space are sampled, while Figure 20b–d illustrate how each of the XY, XZ, and YZ planes
are sampled.

Considering RZ = 1 and RX = RY = R, the coordinates of the neighboring points in the XY, XZ,
and YZ orthogonal planes are given by:

xXY = x + R cos
(

2π
pXY
PXY

)
yXY = y− R sin

(
2π

pXY
PXY

)
,

xXZ = x + R cos
(

2π
pXZ
PXZ

)
zXZ = z− sin

(
2π

pXZ
PXZ

)
,

and

yYZ = y + R cos
(

2π
pYZ
PYZ

)
zYZ = z− sin

(
2π

pYZ
PYZ

)
.

We compute the LBP for each plane using the following equations:

LXY = LBPPXY
R (τc) =

PXY−1

∑
pXY=0

S(τc − τXY)2
pXY ,

LXZ = LBPPXZ
R (τc) =

PXZ−1

∑
pXZ=0

S(τc − τXZ)2pXZ ,

and
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LYZ = LBPPYZ
R (τc) =

PYZ−1

∑
pYZ=0

S(τc − τYZ)2
pYZ .

The OCPP descriptor is built by concatenating these individual LBP descriptors:

OCPPP
R (τc) = [LXY,LXZ,LYZ]

T . (49)

(a) Orthogonal Color Planes (b) XY Plane

(c) XZ Plane (d) YZ Plane

Figure 20. (a) General view of OCPP, (b) XY (PXY = 16) plane, (c) XZ (PXZ = 8) plane, and (d) YZ
(PYZ = 10) plane.

2.15. Salient Local Binary Patterns (SLBP)

The salient local binary pattern (SLBP) is an extension of the LBP which is designed to be used in
image quality assessment methods. The descriptor incorporates visual salient information, given that
recent results show that visual attention models improve the performance of visual quality assessment
methods [52,58].

To estimate the saliency of the different areas of an image I, we use a computational visual
attention model. More specifically, to keep the computational complexity low, we chose the Boolean
map-based saliency (BMS) model [94]. When compared with other state-of-the-art visual attention
models, BMS is noticeably faster, while still providing a good performance.

After computing the LBP descriptor of all pixels of image I, we obtain a LBP map L, where each
L[x, y] gives the local texture associated to the pixel I[x, y]. Similarly, the output of BMS is a saliency
mapW , where each elementW [x, y] corresponds to the probability that the pixel I[x, y] attracts the
attention of a human observer. The first, second, and third columns of Figure 21 depict a set of original
images I, their corresponding LBP maps L, and their corresponding saliency mapsW , respectively.
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(a) Original (I) (b) LBP (L) (c) BMS (W) (d) SLBP (S)

Figure 21. Example of original images (a), their LBP (b), BMS (c), and SLBP (d) maps.

We generate the feature vector by computing the histogram of L weighted byW . The histogram
H = {h[0], h[1], · · · , h[P + 1]} is given by the following expression:

h[φ] = ∑
i

∑
j
W [i, j]∆(L[i, j], φ), (50)

where

∆(v, u) =

{
1 v = u,

0 otherwise.
(51)

The number of bins of this histogram is similar to the number of distinct LBP patterns of L.
So, we can remap each L[i, j] to its weighted form, generating the map S displayed in Figure 21d.
This figure depicts a heatmap representing the importance of each local texture. We name this weighted
LBP map as the “Salient Local Binary Patterns” (SLBP).

2.16. Multiscale Salient Local Binary Patterns (MSLBP)

The multiscale salient local binary patterns (MSLBP) is an extension of SLBP in combination with
MLBP. The idea behind MSLBP is to achieve fine information about frame texture by varying the
parameters of LBP and combining the multiple generated LBP maps with saliency maps. In other
words, we variate the SLBP to obtain multiple maps, as illustrated in Figure 22. For each combination
of radius (R) and sampled points (P), we have an associated histogram HR,P.
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Figure 22. Multiple histogram generation from SLBP.

3. No-Reference Image Quality Assessment Using Texture Descriptors

In the previous section, we presented a series of texture descriptors. Most of them were designed
for pattern recognition and computer vision applications. We also presented a set of proposed
descriptors (MLBP, MLTP, LVP, OCPP, and SLBP), which were specially designed for visual quality
assessment. Our goal is to investigate which descriptors are more suitable for no-reference (blind)
image quality assessment (NR-IQA) methods. Moreover, we are interested in the relation between the
type of descriptor and the performance accuracy of the IQA method.

3.1. Training and Testing Stages

Figure 23 depicts the training stage of the set of IQA methods proposed in this work.
First, we collect subjective scores corresponding to each image of a training set. This procedure
generates a set of labeled images, where each training set entry is composed by a pair of an image
marker and its associated MOS (mean observer score). In other words, for the k-th unlabeled image Ik
the algorithm associates a real value vk, which corresponds to the overall quality of Ik.

Regression

(Training)

Trained Data

Feature Extraction

Extract Maps of

Texture Measurements

(LBP, LTP, BSIF, etc)

Compute

Histograms

Unlabeled Training Images

Extract Subject

Quality Scores

Create Labeled Images (Benchmark Quality Database)

Labeled Images

(Pair: Image, MOS)

Figure 23. Training the quality metric.

After generating the labeled database formed by the set of pairs (Ik, vk), the features are extracted
in order to generate the IQA model. For each image Ik, we compute the histogram of the given LBP
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variant Hk and concatenate all histograms to produce the feature vector. Therefore, the training data
is composed by the set (Hk, vk). The model is created using (Hk, vk), which is formed by a matrix
H ∈ RK×Q and a vector v ∈ R1×K. In this case, K is the number of training entries (rows of H) and Q
is the number of features (columns and the numbers of bins of Hk).

The prediction model is built using a regression model. This model maps each Hk into a real value
vk that predicts a corresponding quality score. The chosen regression model is the random forest (RF)
regressor [61]. RF was chosen based on the results of Fernandez-Delgado et al. [95], which conducted
an exhaustive evaluation of several machine learning methods and concluded that the best results are
achieved by a family of RF methods.

The quality assessment task is depicted in Figure 24. After generating the prediction model,
the image quality can be estimated using the model trained in the previous stage. The procedure is
the same used for the images in the training set. In other words, the same feature (LBP histogram)
is computed using the test image as input and, using this feature, the trained model predicts the
quality score.

Feature Extraction

Extract Maps of

Texture Measurements

(LBP, LTP, BSIF, etc)

Compute

Histograms

Tested/Assessed

Image

Regression

(Predicting)

Trained Data

Predicted

Quality Score

Figure 24. Predicting quality scores.

3.2. Test Setup

Results were generated using an Intel i7-4790 processor at 3.60 GHz. To assess the performance of
the proposed NR-IQA method, we compute the Spearman’s Rank Ordered Correlation (SROCC)
between the mean opinion scores (MOS) and the predicted scores. Although other correlation
coefficients (such as KRCC and PCC) can be added in the analysis, we decided to report the results
using only the SROCC to prevent this article from becoming too lengthy. The proposed method is
compared with the fastest state-of-the-art NR-IQA methods, including BRISQUE [42], CORNIA [96],
CQA [97], SSEQ [98], and LTP [93]. These methods were chosen because they are all based on machine
learning techniques, making the comparison with the proposed method straightforward. Moreover,
the codes of these methods are publicly available for download.

For all machine learning NR-IQA methods, we use the same procedure for training and testing.
In order to avoid overlapping between content detection and quality prediction, we divide the
benchmark databases into content-independent training and testing subsets. Specifically, image
content in the training subset was not used in the testing subset, and vice-versa. This division is made
in a way that 80% of images are used for training and 20% are used for testing. This split is a common
procedure used by several ML-based NR-IQA methods [42,96,97]. For the machine learning NR-IQA
methods that are based on SVR, we use a LibSVR implementation accessed via Python interface and
provided by the Sklearn library [99]. The optimal SVR meta parameters (C, γ, ν, etc.) are found using
exhaustive grid search methods provided by Sklearn’s API. No optimized search methods are used for
the RF version of the proposed method.

The tests were performed using three image quality databases, which include subjective scores
collected from psychophysical experiments. These databases are:
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• LIVE2 [100] database has 982 test images, including 29 originals. This database includes 5
categories of distortions: JPEG, JPEG 2000 (JPEG2k), white noise (WN), Gaussian blur (GB), fast
fading (FF).

• CSIQ [101] database has a total fo 866 test images, consisting of 30 originals and 6 different
categories of distortions. The distortions include JPEG, JPEG 2000 (JPEG2k), JPEG, white noise
(WN), Gaussian blur (GB), fast fading (FF), global contrast decrements (CD), and additive Gaussian
pink noise (PN).

• TID2013 [102] database contains 25 reference images with the following distortions: Additive
Gaussian noise (AGN), Additive noise in color components (AGC), Spatially correlated noise
(SCN), Masked noise (MN), High frequency noise (HFN), Impulse noise (IN), Quantization
noise (QN), Gaussian blur (GB), Image denoising (ID), JPEG, JPEG2k, JPEG transmission errors
(JPEGTE), JPEG2k transmission errors (JPEG2kTE), Non eccentricity pattern noise (NEPN), Local
block-wise distortions (LBD), Intensity shift (IS), Contrast change (CC), Change of color saturation
(CCS), Multiplicative Gaussian noise (MGN), Comfort noise (CN), Lossy compression (LC), Image
color quantization with dither (ICQ), Chromatic aberration (CA), and Sparse sampling and
reconstruction (SSR).

3.3. Results for Basic Descriptor with Varying Parameters

In order to test the LBP and its variants, we vary some parameters of each algorithm. Specifically,
we vary the parameters of LBP, BSIF, CLBP, and LPQ. For the other tested variants, we choose the
parameters R = 1 and P = 8. Table 1 depicts the parameters used by the tested algorithms.

To investigate the suitability of the basic LBP descriptor, we variate the parameters R and P using
the Rotation Invariant LBP (LBPri), the Uniform LBP (LBPu), and the Uniform LBP with Rotation
Invariance (LBPriu2), which are described in Section 2.1. Figure 25 depicts the distribution of SROCC
over simulations on the general case (i.e., when all distortions are considered). Table 2 shows the
average SROCC correlation values for 100 simulations following the aforementioned protocol. In this
table, STD represents the standard deviation and ∆ is the subtraction between the maximum and
minimum value in a given row or column.
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Figure 25. SROCC distribution on LIVE2 using basic LBP.
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Table 1. Tested LBP variants.

Abbreviation Name Parameters

LBPri Basic Local Binary Patterns with rotation invariance Radius (R) and number of neighbors (P)
LBPu Uniform Local Binary Patterns Radius (R) and number of neighbors (P)

LBPriu2 Uniform Local Binary Patterns with rotation invariance Radius (R) and number of neighbors (P)
BSIF Binarized Statistical Image Features Window size and number of bits
LPQ Local Phase Quantization) Local frequency estimation

CLBP Complete Local Binary Patterns CLBP-S, CLBP-C, and CLBP-M
LCP Local Configuration Patterns Radius (R) and number of neighbors (P)
LTP Local Ternary Patterns Threshold (τ), Radius (R) and number of neighbors (P)

RLBP Rotated Local Binary Patterns Radius (R) and number of neighbors (P)
TPLBP Three-Patch Local Binary Patterns Patch size (w), Radius (R), and angle between neighboring patches
FPLBP Four-Patch Local Binary Patterns Patch size (w), Radius of first ring (R1), Radius of second ring (R2), and angle between neighboring patches

LVP Local Variance Patterns Radius (R) and number of neighbors (P)
OCLBP Opposite Color Local Binary Patterns Radius (R) and number of neighbors (P)
OCPP Orthogonal Color Planes Patterns Radius (R) and number of neighbors (P)
SLBP Salient Local Binary Patterns Radius (R) and number of neighbors (P)
MLBP Multiscale Local Binary Patterns Multiple values of Radius (R) and number of neighbors (P)
MLTP Multiscale Local Ternary Patterns Multiple values of Radius (R) and number of neighbors (P)

MSLBP Multiscale Salient Local Binary Patterns Multiple values of Radius (R) and number of neighbors (P)
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Table 2. Average SROCC of simulations on tested image databases using basic LBP variations.

DB DIST
LBPri LBPu LBPriu2

R = 1 R = 2 R = 3 R = 1 R = 2 R = 3 R = 1 R = 2 R = 3

P = 4 P = 8 P = 4 P = 8 P = 16 P = 4 P = 8 P = 16 P = 4 P = 8 P = 4 P = 8 P = 16 P = 4 P = 8 P = 16 P = 4 P = 8 P = 4 P = 8 P = 16 P = 4 P = 8 P = 16

LI
V

E
2

JPEG 0.8959 0.9306 0.8238 0.9058 0.9124 0.7759 0.8683 0.9065 0.8921 0.9275 0.8376 0.9063 0.9176 0.8176 0.8301 0.9069 0.8955 0.9204 0.8343 0.8481 0.8906 0.7716 0.7971 0.8813
JPEG2k 0.9062 0.9423 0.8772 0.9161 0.9324 0.7812 0.8999 0.9238 0.9056 0.9353 0.8691 0.9149 0.9277 0.8181 0.8464 0.9023 0.9088 0.9245 0.8742 0.8724 0.8895 0.7857 0.8241 0.8816

WN 0.9753 0.9794 0.9521 0.9671 0.9694 0.9309 0.9553 0.9676 0.9743 0.9782 0.9356 0.9661 0.9703 0.9285 0.9465 0.9687 0.9753 0.9771 0.9538 0.9607 0.9661 0.9294 0.9407 0.9642
GB 0.9123 0.9621 0.9169 0.9474 0.9551 0.8873 0.9331 0.9479 0.9253 0.9611 0.9168 0.9494 0.9632 0.8771 0.9349 0.9666 0.9137 0.9481 0.9197 0.9144 0.9317 0.8808 0.8946 0.9134
FF 0.8341 0.8871 0.7878 0.8687 0.9054 0.6459 0.8027 0.8539 0.8521 0.8755 0.7692 0.8493 0.9026 0.6588 0.6756 0.8714 0.8325 0.8974 0.7821 0.7959 0.8755 0.6488 0.7585 0.8672

ALL 0.9015 0.9532 0.8713 0.9288 0.9422 0.8038 0.8988 0.9274 0.9101 0.9417 0.8631 0.9235 0.9427 0.8208 0.8501 0.9282 0.9048 0.9366 0.8704 0.8826 0.9174 0.8034 0.8493 0.9079

C
SI

Q

JPEG 0.8245 0.8861 0.8135 0.8908 0.8705 0.8142 0.8682 0.8806 0.8241 0.8912 0.8513 0.8631 0.8725 0.8446 0.8506 0.8701 0.8176 0.8521 0.8073 0.8518 0.8642 0.8083 0.8323 0.8688
JPEG2k 0.7695 0.8532 0.7867 0.8379 0.8414 0.6964 0.8272 0.8339 0.7654 0.8266 0.7658 0.8065 0.8123 0.7025 0.7452 0.7977 0.7699 0.7851 0.7738 0.7571 0.7625 0.6844 0.7063 0.7524

WN 0.7079 0.8452 0.6404 0.7926 0.8229 0.5241 0.7984 0.8905 0.6328 0.9133 0.7658 0.7185 0.7499 0.6801 0.7176 0.6588 0.7149 0.8173 0.6403 0.6615 0.7428 0.6793 0.7031 0.6704
GB 0.8592 0.9078 0.8378 0.8891 0.9125 0.7889 0.8808 0.9141 0.8669 0.8856 0.8273 0.8738 0.8972 0.7946 0.8455 0.8873 0.8547 0.8923 0.8335 0.8718 0.8778 0.7969 0.8457 0.8828
PN 0.5786 0.8827 0.5289 0.8333 0.8768 0.6654 0.7331 0.8541 0.7821 0.8511 0.6184 0.7446 0.7648 0.5857 0.6698 0.6801 0.5735 0.8258 0.5323 0.7571 0.7191 0.5238 0.6301 0.6729
CD 0.3066 0.5901 0.3159 0.4791 0.4968 0.2615 0.3857 0.4577 0.3884 0.4714 0.4561 0.2929 0.3536 0.4051 0.3607 0.3052 0.2661 0.3788 0.2967 0.3245 0.3145 0.2731 0.3976 0.2093

ALL 0.6735 0.8278 0.6471 0.7946 0.8019 0.6274 0.7561 0.7961 0.6854 0.8028 0.6635 0.7341 0.7457 0.6365 0.7059 0.7086 0.6638 0.7718 0.6421 0.7091 0.7181 0.6211 0.6796 0.6861

TI
D

20
13

AGC 0.4781 0.6135 0.2353 0.1084 0.4713 0.3703 0.2131 0.3554 0.1954 0.3496 0.1742 0.1309 0.2519 0.2509 0.2154 0.2912 0.4607 0.3273 0.1975 0.1665 0.1469 0.3681 0.2061 0.2746
AGN 0.7861 0.7757 0.4346 0.5881 0.6799 0.5642 0.4426 0.6969 0.6201 0.6138 0.3626 0.2873 0.6726 0.5726 0.2207 0.4581 0.7619 0.5353 0.4434 0.4146 0.5673 0.5342 0.4753 0.5957
CA 0.2186 0.2052 0.3674 0.2211 0.2453 0.2967 0.2693 0.2061 0.2035 0.2186 0.2797 0.2216 0.2475 0.3032 0.2962 0.2771 0.2065 0.2407 0.4155 0.3651 0.2828 0.2505 0.3781 0.2939
CC 0.1287 0.1007 0.1178 0.1181 0.0869 0.0971 0.1476 0.1696 0.1284 0.1742 0.1131 0.0623 0.0957 0.1238 0.0607 0.0749 0.1551 0.1438 0.1161 0.0996 0.0773 0.0938 0.1098 0.1073

CCS 0.1891 0.1241 0.1666 0.1255 0.2309 0.1898 0.2131 0.1473 0.1751 0.1319 0.1938 0.2195 0.2903 0.1754 0.1881 0.2311 0.1699 0.1786 0.1684 0.1587 0.1599 0.1671 0.2374 0.1852
CN 0.3052 0.1979 0.1655 0.1425 0.3253 0.1959 0.1181 0.1384 0.1834 0.1851 0.1491 0.1384 0.1742 0.1465 0.1257 0.1842 0.3645 0.1473 0.1748 0.1467 0.1365 0.1701 0.2301 0.2325
GB 0.8216 0.8384 0.8041 0.8006 0.8122 0.7781 0.8208 0.8261 0.8139 0.8341 0.8027 0.8253 0.8038 0.7391 0.8152 0.8075 0.8073 0.8199 0.8023 0.8095 0.8253 0.7766 0.7969 0.8276

HFN 0.7934 0.8126 0.6968 0.7648 0.8365 0.7793 0.6121 0.8473 0.7901 0.7541 0.6431 0.6719 0.8648 0.7248 0.5231 0.7821 0.7891 0.6511 0.7048 0.6717 0.6701 0.7604 0.6415 0.7375
ICQ 0.7741 0.7715 0.7638 0.8246 0.7973 0.6748 0.8088 0.8196 0.7642 0.7633 0.7498 0.7904 0.8183 0.7099 0.7703 0.8173 0.7634 0.7908 0.7554 0.7911 0.8011 0.6383 0.7542 0.7818
ID 0.3503 0.8107 0.6211 0.7631 0.7238 0.6084 0.6892 0.6938 0.2738 0.5346 0.5523 0.7415 0.7919 0.5349 0.5742 0.7081 0.3534 0.4192 0.6384 0.6038 0.5019 0.5901 0.4749 0.4761
IN 0.1384 0.3423 0.1394 0.5396 0.5431 0.1327 0.3873 0.5954 0.1169 0.0932 0.1551 0.4252 0.4021 0.1269 0.2188 0.3059 0.1665 0.1384 0.1323 0.5894 0.4722 0.1202 0.2169 0.4401
IS 0.1378 0.0631 0.1201 0.0977 0.0692 0.1183 0.0795 0.0894 0.1068 0.0598 0.0995 0.0743 0.0659 0.1075 0.0742 0.1054 0.1652 0.0936 0.1322 0.1328 0.0982 0.1025 0.0866 0.1271

JPEG 0.7241 0.8392 0.6678 0.8016 0.7973 0.6265 0.7814 0.7861 0.6912 0.8035 0.6523 0.7615 0.7657 0.6311 0.6751 0.7448 0.6888 0.7519 0.6762 0.6631 0.6831 0.6431 0.6367 0.6941
JPEGTE 0.1273 0.2942 0.1361 0.3361 0.2784 0.1353 0.3007 0.2869 0.1434 0.1988 0.1261 0.3026 0.3599 0.1452 0.1092 0.2523 0.1707 0.1534 0.1351 0.2103 0.2803 0.1591 0.1453 0.1888
JPEG2k 0.7949 0.8669 0.6876 0.8057 0.8384 0.7751 0.8153 0.8373 0.8103 0.8057 0.8151 0.8511 0.8323 0.7634 0.8126 0.7996 0.7888 0.8411 0.8311 0.8218 0.8107 0.7673 0.7515 0.7673

JPEG2kTE 0.3888 0.5015 0.8326 0.6049 0.5934 0.5526 0.7203 0.7073 0.4142 0.4981 0.6149 0.7099 0.7131 0.5823 0.5888 0.7007 0.3765 0.4057 0.6853 0.6238 0.5121 0.5581 0.6584 0.5642
LBD 0.1634 0.1739 0.1462 0.1657 0.1175 0.1184 0.1442 0.1894 0.1502 0.1605 0.1569 0.1331 0.1332 0.1566 0.1411 0.1323 0.1753 0.1343 0.1263 0.1562 0.1392 0.1335 0.1288 0.1556
LC 0.4419 0.5581 0.2869 0.2731 0.4507 0.2769 0.2996 0.4807 0.1542 0.1515 0.1865 0.2107 0.1553 0.1901 0.1476 0.1769 0.3596 0.2734 0.3473 0.1519 0.1284 0.3092 0.2984 0.1146

MGN 0.6977 0.6947 0.5239 0.4977 0.7766 0.5871 0.3519 0.7002 0.5971 0.4191 0.2848 0.2084 0.4796 0.4731 0.1605 0.4014 0.7214 0.4916 0.5139 0.4658 0.4893 0.5911 0.4483 0.4081
MN 0.2677 0.4295 0.1952 0.3469 0.1832 0.1448 0.1501 0.1615 0.1667 0.3236 0.1531 0.1286 0.1398 0.1449 0.3087 0.1288 0.2438 0.2652 0.1631 0.1573 0.1319 0.1611 0.2252 0.1771

NEPN 0.1413 0.2054 0.2107 0.2358 0.3383 0.1611 0.2721 0.3708 0.1329 0.1273 0.1795 0.2862 0.2706 0.1391 0.2917 0.2094 0.1254 0.1416 0.1667 0.2787 0.3373 0.1533 0.2252 0.1996
QN 0.7733 0.8584 0.7871 0.8073 0.8353 0.7306 0.7965 0.8115 0.8254 0.8631 0.8069 0.8226 0.8757 0.7957 0.8019 0.8384 0.7769 0.8042 0.7772 0.7764 0.8053 0.7431 0.7828 0.8242
SCN 0.6399 0.6603 0.7103 0.6426 0.5357 0.5411 0.6003 0.6807 0.6111 0.6303 0.5681 0.6257 0.7496 0.5811 0.4169 0.6084 0.6673 0.6803 0.6965 0.5442 0.4238 0.5538 0.5457 0.6853
SSR 0.8246 0.8846 0.8151 0.8507 0.9142 0.7042 0.7911 0.8873 0.7126 0.7776 0.7596 0.7603 0.8188 0.7503 0.7431 0.7884 0.8215 0.6981 0.8203 0.7142 0.7338 0.6931 0.6653 0.7431
ALL 0.4593 0.5859 0.4618 0.5174 0.5356 0.4171 0.4781 0.5198 0.4253 0.4661 0.4031 0.4751 0.5281 0.3848 0.4059 0.4682 0.4413 0.4431 0.4621 0.4688 0.4604 0.4169 0.4224 0.4728
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From Table 2, we can notice that the basic LBP descriptor is suitable for predicting quality.
This suitability is indicated by the high correlation indices obtained on LIVE2 database. On this
database, the average SROCC vary from 0.8034 to 0.9532 in the general case, from 0.6459 to 0.9054
for the FF distortion, from 0.8771 to 0.9666 for the GB distortion, from 0.9285 to 0.9794 for the WN
distortion, from 0.7812 to 0.9423 for the JPEG2k distortion, and from 0.7716 to 0.9306 for the JPEG
distortion. These values suggest that basic LBP variations are well appropriate to model quality of
images under WN and GB distortions. Regarding the LBP parameters, the prediction performance
of WN and GB are less affected by these parameters when compared with other distortions (see the
variance and ∆ values).

Although the basic LBP works well for WN and GB distortions independently of its parameters,
the performance for other distortions varies according to the parameters. This variation is also observed
in CSIQ and TID2013 databases. For example, on the CSIQ database, the SROCC values varies from
0.8073 to 0.8912 in the best case (JPEG) and from 0.2093 to 0.5901 in the worst case (CD). These values
indicate that the prediction performance is affected by the basic LBP parameters. Actually, this is the
premise used by Freitas et al. [91], who assume that different parameters of LBP can be used to achieve
a better performance. In their work, an aggregation of features obtained with different LBP parameters
results in a more robust quality assessment model.

3.4. Results for Variants of Basic Descriptors

Once it has been demonstrated that basic LBP variants present a suitable descriptor to describe
image quality, we check the performance of the other LBP variants described in Section 2. To perform
the tests, we vary the parameters of BSIF, LPQ, and CLBP descriptors. For the remaining extensions
(i.e., LCP, LTP, RLBP, TPLBP, FPLBP, LVP, OCLBP, OCPP, SLBP, MLBP, MLTP, and MSLBP), we do not
vary the parameters. Figure 26 depicts the distribution of SROCC for the general case using the tested
LBP variants (100 simulations).

To investigate the suitability of the basic BSIF descriptor, we performed the simulations by
changing the patch size and the number of selected binarized feature (see Section 2.4). The results
of the performed simulations on the LIVE2, CSIQ, and TID2013 databases are depicted in Table 3
respectively. Based on results of Table 3, we notice that BSIF is a valuable descriptor for IQA. In the
LIVE2 database, the BSIF performs well for almost all configurations. However, the results are better
for smaller patch sizes. In these cases, the average SROCC values are higher and have a low variance.
As shown in Table 3, the performance of BSIF decreases for the CSIQ database. When compared with
the LIVE2 database, the average SROCC values are lower and the variance is higher. The values in
both Table 3 indicate that there is a relationship between the patch size and the number of bits. More
specifically, the larger the patch size, the higher the number of bits required to obtain a good quality
prediction. For example, in both LIVE2 and CSIQ databases, using a 3 × 3 patch, the best performance
is obtained using 8 bits and the worst performance is obtained when only 5 bits are used.

Table 4 shows the results of simulations using seven different LPQ configurations, corresponding
to different LPQ parameters. The main parameters of the LPQ descriptor are the size of the local
window and the method used for local frequency estimation. The size of the local window was fixed
on 3 × 3 and the tests were performed by varying the method used for local frequency estimation.
The LPQ configurations are the following:

• C1: Short-term Fourier transform (STFT) with uniform window (basic version of LPQ);
• C2: STFT with Gaussian window;
• C3: Gaussian derivative quadrature filter pair;
• C4: STFT with uniform window + STFT with Gaussian window (concatenation of feature vectors

produced by C1 and C2);
• C5: STFT with uniform window + STFT with Gaussian derivative quadrature filter pair

(concatenation of feature vectors produced by C1 and C3);
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• C6: STFT with Gaussian window + Gaussian derivative quadrature filter pair (concatenation of
feature vectors produced by C2 and C3);

• C7: Concatenation of feature vectors produced by C1, C2, and C3.
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Figure 26. Distribution of average SROCC after 100 simulations using different LBP variations.
(a) LIVE2. (b) CSIQ. (c) TID2013.
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Table 3. Average SROCC of 1000 runs of simulations on tested databases using BSIF variations.

SIZE 3 × 3 5 × 5 7 × 7

Average STD MAX MIN ∆BITS
5 6 7 8 9 10 11 12

DB DIST

LIVE2

JPEG 0.8864 0.9015 0.8857 0.8931 0.8799 0.8969 0.8874 0.8670 0.8872 0.0107 0.9015 0.8670 0.0345
JPEG2k 0.8803 0.9046 0.9019 0.8585 0.9059 0.8865 0.9138 0.8620 0.8892 0.0209 0.9138 0.8585 0.0553

WN 0.9440 0.9590 0.9609 0.9614 0.9620 0.9630 0.9639 0.9469 0.9576 0.0077 0.9639 0.9440 0.0200
GB 0.8644 0.9293 0.9203 0.9330 0.9369 0.9264 0.9505 0.9213 0.9228 0.0255 0.9505 0.8644 0.0862
FF 0.8270 0.8208 0.8174 0.8075 0.8486 0.8587 0.8674 0.7728 0.8275 0.0306 0.8674 0.7728 0.0946

ALL 0.8887 0.9116 0.9127 0.9099 0.9236 0.9251 0.9308 0.8947 0.9121 0.0147 0.9308 0.8887 0.0422
Average 0.8818 0.9045 0.8998 0.8939 0.9095 0.9095 0.9190 0.8775

STD 0.0380 0.0462 0.0475 0.0549 0.0407 0.0365 0.0370 0.0605
MAX 0.9440 0.9590 0.9609 0.9614 0.9620 0.9630 0.9639 0.9469
MIN 0.8270 0.8208 0.8174 0.8075 0.8486 0.8587 0.8674 0.7728

CSIQ

JPEG 0.8541 0.8638 0.8662 0.8780 0.8825 0.8800 0.8800 0.8687 0.8717 0.0100 0.8825 0.8541 0.0284
JPEG2k 0.8040 0.8111 0.8549 0.8564 0.8105 0.8282 0.8237 0.8182 0.8259 0.0200 0.8564 0.8040 0.0525

WN 0.5468 0.6649 0.7668 0.7882 0.8089 0.8217 0.8193 0.7754 0.7490 0.0959 0.8217 0.5468 0.2749
GB 0.6983 0.7965 0.7871 0.8081 0.8799 0.8762 0.8790 0.8724 0.8247 0.0648 0.8799 0.6983 0.1816
PN 0.3325 0.5391 0.6538 0.7990 0.7875 0.7663 0.7699 0.7460 0.6743 0.1633 0.7990 0.3325 0.4665
CD 0.1550 0.1443 0.2428 0.2952 0.0741 0.0907 0.0771 0.0978 0.1471 0.0819 0.2952 0.0741 0.2210

_ALL 0.5977 0.6904 0.7234 0.7664 0.7317 0.7325 0.7311 0.7074 0.7101 0.0504 0.7664 0.5977 0.1687
Average 0.5698 0.6443 0.6993 0.7416 0.7107 0.7137 0.7115 0.6980

STD 0.2523 0.2459 0.2142 0.2007 0.2856 0.2799 0.2849 0.2716
MAX 0.8541 0.8638 0.8662 0.8780 0.8825 0.8800 0.8800 0.8724
MIN 0.1550 0.1443 0.2428 0.2952 0.0741 0.0907 0.0771 0.0978

TID

AGC 0.2599 0.2273 0.3868 0.4888 0.4042 0.3931 0.3923 0.4787 0.3789 0.0928 0.4888 0.2273 0.2615
AGN 0.5046 0.5388 0.7250 0.7462 0.6615 0.6400 0.6808 0.6954 0.6490 0.0859 0.7462 0.5046 0.2415
CA 0.5727 0.6720 0.6729 0.6771 0.5079 0.5057 0.5351 0.5824 0.5907 0.0741 0.6771 0.5057 0.1714
CC 0.1219 0.0946 0.1185 0.1362 0.0815 0.0965 0.0885 0.0838 0.1027 0.0202 0.1362 0.0815 0.0546

CCS 0.1431 0.1415 0.1435 0.1192 0.1881 0.1806 0.2246 0.1762 0.1646 0.0339 0.2246 0.1192 0.1054
CN 0.1338 0.3165 0.2735 0.3769 0.2942 0.4215 0.4600 0.4838 0.3450 0.1149 0.4838 0.1338 0.3500
GB 0.7546 0.8277 0.8154 0.8416 0.8832 0.8862 0.9051 0.8953 0.8511 0.0512 0.9051 0.7546 0.1505

HFN 0.6580 0.7628 0.8047 0.8313 0.7757 0.7878 0.8131 0.8068 0.7800 0.0539 0.8313 0.6580 0.1733
ICQ 0.7117 0.7777 0.7700 0.7939 0.7632 0.7742 0.7854 0.8123 0.7735 0.0293 0.8123 0.7117 0.1006
ID 0.5627 0.6804 0.6946 0.6823 0.7338 0.7446 0.7538 0.7785 0.7038 0.0672 0.7785 0.5627 0.2158
IN 0.4100 0.7385 0.6712 0.7008 0.7762 0.7592 0.7714 0.6995 0.6909 0.1196 0.7762 0.4100 0.3662
IS 0.1142 0.1092 0.1146 0.0938 0.1291 0.1435 0.1689 0.1519 0.1281 0.0250 0.1689 0.0938 0.0750

JPEG 0.7625 0.8168 0.7697 0.7708 0.8177 0.8026 0.8091 0.8215 0.7963 0.0246 0.8215 0.7625 0.0591
JPEGTE 0.1048 0.3770 0.4231 0.4723 0.4750 0.4908 0.5752 0.5000 0.4273 0.1424 0.5752 0.1048 0.4704
JPEG2k 0.7622 0.8362 0.7923 0.8208 0.8208 0.8246 0.8115 0.8445 0.8141 0.0262 0.8445 0.7622 0.0823

JPEG2kTE 0.3362 0.4045 0.3646 0.5250 0.5476 0.6743 0.6922 0.7746 0.5399 0.1635 0.7746 0.3362 0.4385
LBD 0.2808 0.2864 0.2968 0.3775 0.3342 0.3300 0.3343 0.3652 0.3257 0.0355 0.3775 0.2808 0.0967
LC 0.2569 0.2731 0.4777 0.5323 0.5796 0.6315 0.6300 0.6565 0.5047 0.1590 0.6565 0.2569 0.3996

MGN 0.3754 0.5173 0.6692 0.6924 0.6508 0.6469 0.6527 0.6919 0.6121 0.1105 0.6924 0.3754 0.3170
MN 0.1833 0.3278 0.2337 0.3591 0.1812 0.1862 0.1812 0.1658 0.2273 0.0748 0.3591 0.1658 0.1933

NEPN 0.1201 0.1344 0.1456 0.1400 0.2383 0.2610 0.2569 0.2091 0.1882 0.0593 0.2610 0.1201 0.1410
QN 0.6454 0.7046 0.7615 0.7469 0.7281 0.7001 0.7296 0.7585 0.7218 0.0383 0.7615 0.6454 0.1162
SCN 0.4627 0.6238 0.6904 0.7138 0.8215 0.8069 0.8131 0.8815 0.7267 0.1356 0.8815 0.4627 0.4188
SSR 0.7231 0.7962 0.8700 0.9108 0.8823 0.8938 0.9192 0.9008 0.8620 0.0679 0.9192 0.7231 0.1962

_ALL 0.4252 0.5364 0.5809 0.6177 0.5965 0.6126 0.6247 0.5964 0.5738 0.0661 0.6247 0.4252 0.1995
Average 0.4154 0.5009 0.5306 0.5667 0.5549 0.5678 0.5843 0.5924

STD 0.2372 0.2559 0.2560 0.2495 0.2566 0.2501 0.2509 0.2624
MAX 0.7625 0.8362 0.8700 0.9108 0.8832 0.8938 0.9192 0.9008
MIN 0.1048 0.0946 0.1146 0.0938 0.0815 0.0965 0.0885 0.0838

Table 4 shows that the performance of LPQ is high for the LIVE2 database, with mean SROCC
values above 0.9 for all distortions, independently of the configuration. The low variance and the
high average value of the SROCC values for the LIVE2 indicate that LPQ is a suitable descriptor for
measuring the quality of JPEG, JPEG2k, WN, GB, and FF distortions. However, the performance of the
prediction decreases for the CSIQ and TID2013 databases. This is probably due to the presence of the
contrast and color distortions on the CSIQ and TID2013 databases.
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Table 4. Average SROCC of 1000 runs of simulations on tested databases using LPQ variations.

DB DIST C1 C2 C3 C4 C5 C6 C7 Average STD MAX MIN ∆

LIVE2

JPEG 0.8999 0.9324 0.9140 0.9186 0.9130 0.9197 0.9174 0.9164 0.0097 0.9324 0.8999 0.0325
JPEG2k 0.8865 0.8916 0.8832 0.8797 0.8900 0.8828 0.8841 0.8854 0.0042 0.8916 0.8797 0.0119

WN 0.9445 0.9605 0.9323 0.9566 0.9422 0.9565 0.9556 0.9498 0.0102 0.9605 0.9323 0.0282
GB 0.8924 0.9126 0.9042 0.9116 0.9037 0.9258 0.9231 0.9105 0.0116 0.9258 0.8924 0.0333
FF 0.8659 0.8536 0.8394 0.8596 0.8523 0.8450 0.8577 0.8533 0.0090 0.8659 0.8394 0.0265

ALL 0.9051 0.9141 0.8998 0.9149 0.9047 0.9163 0.9167 0.9102 0.0069 0.9167 0.8998 0.0169
Average 0.8991 0.9108 0.8955 0.9068 0.9010 0.9077 0.9091

STD 0.0261 0.0363 0.0319 0.0337 0.0295 0.0387 0.0339
MAX 0.9445 0.9605 0.9323 0.9566 0.9422 0.9565 0.9556
MIN 0.8659 0.8536 0.8394 0.8596 0.8523 0.8450 0.8577

CSIQ

JPEG 0.8415 0.8801 0.8651 0.8701 0.8538 0.8812 0.8706 0.8660 0.0142 0.8812 0.8415 0.0397
JPEG2k 0.7323 0.7677 0.8172 0.7698 0.8029 0.8029 0.7948 0.7839 0.0291 0.8172 0.7323 0.0849

WN 0.3586 0.5805 0.5658 0.6008 0.5554 0.6505 0.6372 0.5641 0.0972 0.6505 0.3586 0.2919
GB 0.8047 0.8483 0.8343 0.8647 0.8305 0.8723 0.8687 0.8462 0.0246 0.8723 0.8047 0.0676
PN 0.6681 0.7210 0.7867 0.7328 0.7740 0.8125 0.7944 0.7556 0.0507 0.8125 0.6681 0.1444
CD 0.3017 0.3248 0.3264 0.4328 0.3321 0.4462 0.4436 0.3725 0.0648 0.4462 0.3017 0.1445

ALL 0.6858 0.7223 0.7360 0.7449 0.7308 0.7623 0.7604 0.7347 0.0261 0.7623 0.6858 0.0765
Average 0.6275 0.6921 0.7045 0.7165 0.6971 0.7468 0.7385

STD 0.2128 0.1891 0.1938 0.1546 0.1888 0.1534 0.1519
MAX 0.8415 0.8801 0.8651 0.8701 0.8538 0.8812 0.8706
MIN 0.3017 0.3248 0.3264 0.4328 0.3321 0.4462 0.4436

TID

AGC 0.3526 0.2115 0.3792 0.3635 0.3900 0.4083 0.4304 0.3622 0.0715 0.4304 0.2115 0.2189
AGN 0.5149 0.5300 0.5292 0.6693 0.5399 0.7145 0.7092 0.6010 0.0918 0.7145 0.5149 0.1996
CA 0.6601 0.6451 0.6256 0.6444 0.6410 0.6455 0.6413 0.6433 0.0101 0.6601 0.6256 0.0344
CC 0.0996 0.0992 0.0946 0.1100 0.1027 0.1015 0.1037 0.1016 0.0047 0.1100 0.0946 0.0154

CCS 0.1344 0.1088 0.1300 0.1362 0.1342 0.1258 0.1346 0.1292 0.0096 0.1362 0.1088 0.0273
CN 0.3846 0.2571 0.3696 0.3131 0.3881 0.3531 0.3604 0.3466 0.0467 0.3881 0.2571 0.1310
GB 0.6762 0.7720 0.7431 0.8162 0.7257 0.8431 0.8204 0.7709 0.0599 0.8431 0.6762 0.1669

HFN 0.7963 0.7862 0.8254 0.8123 0.8235 0.8462 0.8362 0.8180 0.0213 0.8462 0.7862 0.0600
ICQ 0.7662 0.7808 0.8200 0.7831 0.8023 0.8165 0.8085 0.7968 0.0203 0.8200 0.7662 0.0538
ID 0.6277 0.7192 0.7231 0.7877 0.7062 0.8088 0.7938 0.7381 0.0637 0.8088 0.6277 0.1812
IN 0.7677 0.6023 0.7269 0.7158 0.7426 0.6992 0.7523 0.7153 0.0548 0.7677 0.6023 0.1654
IS 0.1031 0.0950 0.1189 0.0823 0.1115 0.0831 0.0900 0.0977 0.0141 0.1189 0.0823 0.0365

JPEG 0.6985 0.8077 0.7399 0.8360 0.7248 0.8472 0.8312 0.7836 0.0609 0.8472 0.6985 0.1487
JPEGTE 0.5204 0.3885 0.4938 0.4512 0.5115 0.4354 0.4581 0.4655 0.0466 0.5204 0.3885 0.1319
JPEG2k 0.7915 0.7692 0.7968 0.8120 0.8072 0.8082 0.8085 0.7991 0.0150 0.8120 0.7692 0.0427

JPEG2kTE 0.4554 0.4419 0.5158 0.3823 0.5165 0.4931 0.5038 0.4727 0.0493 0.5165 0.3823 0.1342
LBD 0.3362 0.3627 0.3560 0.3591 0.3548 0.3862 0.3635 0.3598 0.0148 0.3862 0.3362 0.0499
LC 0.7212 0.3088 0.6808 0.4996 0.7169 0.5838 0.5815 0.5847 0.1464 0.7212 0.3088 0.4123

MGN 0.6406 0.5823 0.6707 0.7346 0.6753 0.7705 0.7713 0.6922 0.0703 0.7713 0.5823 0.1890
MN 0.3678 0.6290 0.4174 0.4681 0.4095 0.5466 0.5137 0.4789 0.0907 0.6290 0.3678 0.2612

NEPN 0.1639 0.1329 0.1758 0.2146 0.1968 0.2073 0.2189 0.1872 0.0313 0.2189 0.1329 0.0860
QN 0.8362 0.8146 0.8127 0.8469 0.8308 0.8323 0.8442 0.8311 0.0133 0.8469 0.8127 0.0342
SCN 0.7492 0.7038 0.8265 0.7269 0.8131 0.7635 0.8027 0.7694 0.0462 0.8265 0.7038 0.1227
SSR 0.7231 0.8846 0.7265 0.8815 0.7469 0.8835 0.8831 0.8185 0.0811 0.8846 0.7231 0.1615
ALL 0.5910 0.5593 0.6031 0.6358 0.6075 0.6519 0.6545 0.6147 0.0347 0.6545 0.5593 0.0951

Average 0.5391 0.5197 0.5561 0.5633 0.5608 0.5862 0.5886
STD 0.2361 0.2593 0.2408 0.2573 0.2388 0.2588 0.2563
MAX 0.8362 0.8846 0.8265 0.8815 0.8308 0.8835 0.8831
MIN 0.0996 0.0950 0.0946 0.0823 0.1027 0.0831 0.0900

Table 5 shows the average SROCC of simulations using CLBP as the texture descriptor. For this
descriptor, we tested the influence of each combination of feature set (see CLBPS, CLBPM, and CLBPC
in Figure 9) on the image quality prediction. From Table 5, we can notice that the feature sets, CLBPM
and CLBPC, are individually unsatisfactory for measuring image quality. This is due to the low SROCC
scores obtained for the three tested databases. On the other hand, CLBPS is the dominant feature set
for quality description, since it presents the higher SROCC values in almost all cases.

Interestingly, the combination of CLBP feature sets produces a better performance, as indicated
by the performances of CLBPSM (CLBPS + CLBPM) and CLBPSMC (CLBPS + CLBPM + CLBPC). From
Table 5, we can observe that the mean SROCC value of overall case increases from 0.91 (CLBPS) to 0.93
(CLBPMC and CLBPSMC) for the LIVE2 database. The combination of feature sets also improves the
average SROCC values of the TID2013 database, increasing from 0.35 (CLBPS) to 0.44 (CLBPMC and
CLBPSMC). The average values on CSIQ database show that the best performance is obtained using
CLBPMC. Based on these SROCC values, we can conclude that CLBPMC is the best combination of
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features to assess image quality since the incorporation of CLBPC does not improve or even deteriorate
the general prediction performance.

Table 5. Average SROCC of 1000 runs of simulations on tested databases using CLBP variations.

Radius 1 2

Average STD MAX MIN ∆Sampled Points
4 8 12 16 4 8 12 16

DB DIST

LIVE2

JPEG 0.9043 0.9074 0.9056 0.9049 0.8889 0.8826 0.9086 0.8617 0.8955 0.0166 0.9086 0.8617 0.0469
JPEG2k 0.9095 0.9107 0.9251 0.9009 0.9144 0.8980 0.9164 0.8888 0.9080 0.0115 0.9251 0.8888 0.0363

WN 0.9747 0.9714 0.9799 0.9730 0.9554 0.9585 0.9836 0.9515 0.9685 0.0119 0.9836 0.9515 0.0321
GB 0.9187 0.9343 0.9263 0.9383 0.9157 0.9168 0.9285 0.9151 0.9242 0.0090 0.9383 0.9151 0.0232
FF 0.8964 0.8520 0.8406 0.8577 0.8261 0.8003 0.8553 0.7634 0.8365 0.0404 0.8964 0.7634 0.1329

ALL 0.9264 0.9227 0.9252 0.9189 0.9053 0.8990 0.9242 0.8799 0.9127 0.0166 0.9264 0.8799 0.0465
Average 0.9217 0.9164 0.9171 0.9156 0.9010 0.8925 0.9194 0.8767

STD 0.0280 0.0391 0.0450 0.0387 0.0427 0.0522 0.0411 0.0637
MAX 0.9747 0.9714 0.9799 0.9730 0.9554 0.9585 0.9836 0.9515
MIN 0.8964 0.8520 0.8406 0.8577 0.8261 0.8003 0.8553 0.7634

TID

AGC 0.4642 0.2396 0.2892 0.3196 0.4247 0.1642 0.1648 0.1638 0.2788 0.1185 0.4642 0.1638 0.3004
AGN 0.7827 0.6831 0.6758 0.7396 0.6565 0.5192 0.5546 0.5373 0.6436 0.0971 0.7827 0.5192 0.2635
CA 0.5275 0.6265 0.5736 0.4519 0.6640 0.6035 0.4916 0.5340 0.5591 0.0711 0.6640 0.4519 0.2121
CC 0.1258 0.0989 0.0865 0.1192 0.1138 0.0912 0.1204 0.0954 0.1064 0.0151 0.1258 0.0865 0.0393

CCS 0.1704 0.1496 0.1623 0.1415 0.1853 0.1541 0.1138 0.1317 0.1511 0.0225 0.1853 0.1138 0.0715
CN 0.2373 0.2685 0.3096 0.4012 0.1658 0.4262 0.4035 0.3369 0.3186 0.0914 0.4262 0.1658 0.2604
GB 0.8708 0.8915 0.8846 0.8631 0.8867 0.8777 0.8656 0.8722 0.8765 0.0103 0.8915 0.8631 0.0285

HFN 0.8496 0.8263 0.8184 0.8232 0.8412 0.7654 0.7768 0.7220 0.8029 0.0439 0.8496 0.7220 0.1276
ICQ 0.8205 0.8365 0.8277 0.8185 0.8208 0.8103 0.8476 0.8392 0.8277 0.0125 0.8476 0.8103 0.0372
ID 0.5692 0.5992 0.6138 0.6000 0.7296 0.5815 0.6485 0.6731 0.6269 0.0537 0.7296 0.5692 0.1604
IN 0.6150 0.6892 0.7328 0.7792 0.5831 0.5058 0.6253 0.6154 0.6432 0.0870 0.7792 0.5058 0.2735
IS 0.1066 0.2123 0.1879 0.1246 0.1408 0.1471 0.1046 0.1144 0.1423 0.0393 0.2123 0.1046 0.1077

JPEG 0.8101 0.8345 0.8088 0.8046 0.7746 0.8054 0.8281 0.8026 0.8086 0.0180 0.8345 0.7746 0.0599
JPEGTE 0.2487 0.3846 0.3518 0.4125 0.2464 0.3762 0.4462 0.4015 0.3585 0.0738 0.4462 0.2464 0.1998
JPEG2k 0.8200 0.8569 0.8515 0.8223 0.8786 0.8442 0.8615 0.8638 0.8499 0.0203 0.8786 0.8200 0.0586

JPEG2kTE 0.5696 0.5538 0.5723 0.5812 0.7015 0.6977 0.6477 0.6623 0.6233 0.0608 0.7015 0.5538 0.1477
LBD 0.1908 0.2723 0.1894 0.1787 0.1473 0.1875 0.2654 0.2881 0.2149 0.0522 0.2881 0.1473 0.1407
LC 0.6585 0.5569 0.5415 0.5565 0.5846 0.5335 0.4827 0.4681 0.5478 0.0593 0.6585 0.4681 0.1904

MGN 0.7275 0.6946 0.6758 0.7291 0.7091 0.5607 0.5761 0.5583 0.6539 0.0757 0.7291 0.5583 0.1707
MN 0.4185 0.4234 0.3570 0.3937 0.1883 0.1598 0.1946 0.1908 0.2908 0.1170 0.4234 0.1598 0.2635

NEPN 0.1452 0.2268 0.2801 0.3613 0.1486 0.2097 0.2360 0.2485 0.2320 0.0700 0.3613 0.1452 0.2160
QN 0.7646 0.8108 0.8323 0.8154 0.7204 0.8103 0.7618 0.7800 0.7869 0.0370 0.8323 0.7204 0.1119
SCN 0.7877 0.7927 0.7492 0.7646 0.7123 0.6408 0.6512 0.6577 0.7195 0.0629 0.7927 0.6408 0.1519
SSR 0.8842 0.8608 0.8838 0.8519 0.8731 0.7892 0.7677 0.7962 0.8384 0.0467 0.8842 0.7677 0.1165

_ALL 0.5925 0.6092 0.6070 0.5983 0.5747 0.5626 0.5904 0.5846 0.5899 0.0158 0.6092 0.5626 0.0466
Average 0.5503 0.5599 0.5545 0.5621 0.5389 0.5129 0.5211 0.5175

STD 0.2702 0.2598 0.2601 0.2541 0.2810 0.2602 0.2574 0.2578
MAX 0.8842 0.8915 0.8846 0.8631 0.8867 0.8777 0.8656 0.8722
MIN 0.1066 0.0989 0.0865 0.1192 0.1138 0.0912 0.1046 0.0954

Table 6 depicts the mean SROCC values of simulations using other LBP variants. From this
table, we can notice that almost all variants present an acceptable performance for the LIVE2 database.
The exceptions are TPLBP and FPLBP that presented mean SROCC below 0.65, which is poorer than
other methods. Based on the average values of mean SROCC on LIVE2, the methods LTP, RLBP, LCP,
LVP, MLTP, SLBP, OCLBP, MLBP, MSLBP, and OCPP are in ascending order of performance. For the
CSIQ and TID2013 databases, the methods perform similarly, but RLBP performs worse than LTP
on CSIQ.

It is noticeable that multiscale approaches (MLBP, MLTP, and MSLBP) present the best results.
For the three tested databases, the results are in agreement with the assumptions made by
Freitas et al. [91], who demonstrated that combining multiple LBP descriptor parameters increases
the prediction performance. However, we can observe that the OCPP descriptor presents the best
performance when compared with any other tested descriptor, even when compared with the
multiscale approaches. Although for the LIVE2 database the performance of the OCPP descriptor is
similar to the performance of the MSLBP descriptor, this good performance is not achieved for the other
databases. While MSLBP presents average SROCC values of 0.8147 for the CSIQ database, the OCPP
presents an average SROCC value of 0.9140 for the same database. Similarly, for the TID2013 database,
the average SROCC values obtained with MSLBP and OCPP are 0.5919 and 0.7035, respectively.
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Table 6. Average SROCC of 100 runs of simulations on tested image databases using other LBP variations.

DB DIST LCP LTP RLBP TPLBP FPLBP LVP OCLBP OCPP SLBP MLBP MLTP MSLBP

LI
V

E
2

JPEG 0.8921 0.8278 0.8052 0.7047 0.6626 0.9363 0.9312 0.9678 0.9151 0.9249 0.9395 0.9373
JPEG2k 0.8913 0.8029 0.8299 0.6491 0.5552 0.9461 0.9411 0.9597 0.9334 0.9342 0.9372 0.9406

WN 0.9628 0.9358 0.9225 0.6354 0.6774 0.9764 0.9731 0.9861 0.9825 0.9822 0.9646 0.9831
GB 0.9304 0.8824 0.9111 0.5923 0.5884 0.9531 0.9571 0.9612 0.9432 0.9524 0.9530 0.9619
FF 0.8034 0.7004 0.7821 0.6724 0.6443 0.8848 0.8936 0.9141 0.9079 0.9487 0.8758 0.9364

ALL 0.9006 0.8251 0.8487 0.6308 0.6171 0.9376 0.9418 0.9562 0.9405 0.9238 0.9316 0.9528

Average 0.8968 0.8291 0.8499 0.6475 0.6242 0.9391 0.9397 0.9575 0.9371 0.9444 0.9336 0.9520
STD 0.0534 0.0794 0.0566 0.0384 0.0465 0.0303 0.0269 0.0238 0.0263 0.0220 0.0307 0.0182
MAX 0.9628 0.9358 0.9225 0.7047 0.6774 0.9764 0.9731 0.9861 0.9825 0.9822 0.9646 0.9831
MIN 0.8034 0.7004 0.7821 0.5923 0.5552 0.8848 0.8936 0.9141 0.9079 0.9238 0.8758 0.9364

C
SI

Q

JPEG 0.8412 0.8011 0.7186 0.7524 0.7179 0.9221 0.8943 0.9596 0.8754 0.8847 0.9292 0.9064
JPEG2k 0.7746 0.6371 0.6552 0.5699 0.6118 0.8946 0.8865 0.9331 0.7913 0.8095 0.8877 0.8156

WN 0.8152 0.5057 0.6064 0.1931 0.3599 0.7063 0.8441 0.9186 0.8495 0.9014 0.6454 0.8939
GB 0.7724 0.7901 0.7939 0.8517 0.6972 0.9137 0.9203 0.9390 0.8539 0.9159 0.9244 0.8816
PN 0.7049 0.5356 0.2078 0.0815 0.3367 0.7091 0.8361 0.9471 0.7502 0.8872 0.7828 0.8431
CD 0.1382 0.2246 0.1072 0.3174 0.1025 0.2659 0.4914 0.7753 0.4515 0.5172 0.2082 0.5299

ALL 0.6672 0.5804 0.5109 0.4815 0.3214 0.8238 0.8421 0.9253 0.7971 0.8399 0.8280 0.8324

Average 0.6734 0.5821 0.5143 0.4639 0.4496 0.7479 0.8164 0.9140 0.7670 0.8223 0.7437 0.8147
STD 0.2435 0.1958 0.2607 0.2847 0.2300 0.2312 0.1468 0.0626 0.1457 0.1395 0.2559 0.1300
MAX 0.8412 0.8011 0.7939 0.8517 0.7179 0.9221 0.9203 0.9596 0.8754 0.9159 0.9292 0.9064
MIN 0.1382 0.2246 0.1072 0.0815 0.1025 0.2659 0.4914 0.7753 0.4515 0.5172 0.2082 0.5299

T
ID

20
13

AGC 0.3683 0.3654 0.2273 0.1942 0.1207 0.4688 0.5315 0.8308 0.3999 0.5708 0.5963 0.6018
AGN 0.3903 0.4211 0.5903 0.1731 0.2111 0.6069 0.7253 0.8634 0.6369 0.7884 0.6631 0.7811
CA 0.2844 0.2267 0.3356 0.2884 0.1604 0.6944 0.4254 0.8821 0.2379 0.3144 0.6749 0.3891
CC 0.1089 0.1857 0.0816 0.0953 0.1331 0.1756 0.0846 0.4785 0.1261 0.0881 0.1886 0.2161

CCS 0.1251 0.1503 0.1934 0.2148 0.1296 0.1997 0.5704 0.5577 0.1402 0.1375 0.2384 0.2757
CN 0.4769 0.2896 0.2682 0.1101 0.1942 0.2101 0.5849 0.5309 0.2725 0.3249 0.3880 0.5229
GB 0.8455 0.5795 0.8084 0.8072 0.4096 0.8551 0.8607 0.8914 0.8215 0.8769 0.7465 0.8721

HFN 0.6226 0.6678 0.7125 0.2735 0.3503 0.8181 0.8118 0.9445 0.7361 0.8676 0.7626 0.9031
ICQ 0.7273 0.6334 0.4951 0.5592 0.5123 0.8261 0.7849 0.8350 0.8329 0.8134 0.7603 0.8302
ID 0.5307 0.2249 0.4969 0.3623 0.2738 0.8694 0.7719 0.9102 0.5684 0.6434 0.7063 0.7488
IN 0.4342 0.4257 0.4649 0.1107 0.1534 0.2866 0.5069 0.6696 0.1842 0.4551 0.6484 0.5838
IS 0.0746 0.0821 0.1058 0.0757 0.0527 0.1406 0.1061 0.1699 0.0992 0.1165 0.3291 0.2092

JPEG 0.6823 0.6914 0.6653 0.3506 0.5738 0.8961 0.8201 0.9158 0.7123 0.7964 0.6631 0.7907
JPEGTE 0.4361 0.1138 0.2523 0.1024 0.0896 0.2925 0.5153 0.3795 0.2511 0.2131 0.2314 0.4353
JPEG2k 0.8057 0.5692 0.7138 0.6557 0.3661 0.9099 0.8769 0.9407 0.8661 0.8507 0.7780 0.9369

JPEG2kTE 0.6015 0.7531 0.3476 0.3769 0.1531 0.4394 0.5984 0.6552 0.5046 0.6711 0.6594 0.7388
LBD 0.0969 0.1046 0.1453 0.1215 0.1135 0.1944 0.1311 0.1885 0.2374 0.1464 0.3813 0.2365
LC 0.3242 0.1819 0.3226 0.2776 0.0876 0.5289 0.5692 0.8326 0.2565 0.3711 0.6533 0.3819

MGN 0.4211 0.1281 0.5488 0.3085 0.1541 0.5324 0.6753 0.8471 0.6335 0.6666 0.6209 0.7512
MN 0.1436 0.1988 0.1981 0.1546 0.2959 0.4168 0.5146 0.7290 0.3329 0.1535 0.4243 0.1638

NEPN 0.1583 0.1009 0.1207 0.2603 0.0908 0.1534 0.2198 0.1545 0.3026 0.2558 0.1256 0.3712
QN 0.7961 0.7711 0.6524 0.3618 0.5676 0.7869 0.8207 0.7890 0.8769 0.8623 0.7361 0.9173
SCN 0.6546 0.6576 0.7911 0.1331 0.1126 0.6584 0.7192 0.8914 0.5803 0.7434 0.7015 0.6042
SSR 0.7588 0.5781 0.6569 0.6623 0.5988 0.9088 0.8892 0.9391 0.6638 0.8488 0.8457 0.8357
ALL 0.4631 0.3437 0.4072 0.2512 0.1377 0.6997 0.6417 0.7621 0.5901 0.6339 0.6078 0.7012

Average 0.4532 0.3778 0.4241 0.2912 0.2417 0.5428 0.5902 0.7035 0.4746 0.5284 0.5652 0.5919
STD 0.2460 0.2353 0.2308 0.1958 0.1705 0.2767 0.2418 0.2524 0.2562 0.2873 0.2098 0.2530
MAX 0.8455 0.7711 0.8084 0.8072 0.5988 0.9099 0.8892 0.9445 0.8769 0.8769 0.8457 0.9369
MIN 0.0746 0.0821 0.0816 0.0757 0.0527 0.1406 0.0846 0.1545 0.0992 0.0881 0.1256 0.1638

When we observe the results obtained per distortion for the CSIQ database, we can notice that the
superiority of OCPP is due to the good performance obtained for the contrast distortions. While the
quality prediction of contrast-distorted images has a mean SROCC value equal to 0.5299 when using
MSLBP, the mean SROCC value for these same images are 0.7753 when using OCPP. Similarly, for the
TID2013 database, the OCPP presents a superior performance for several types of distortions, especially
for color and contrast-related distortions (AGC, AGN, CA, CC, CCS, etc.).

3.5. Comparison with Other IQA Methods

Figure 27 depicts the SROCC box plots for different no-reference IQA methods. Moreover,
Table 7 depicts the results of six IQA methods, including two established full-reference metrics (PSNR
and SSIM) and four state-of-the-art no-reference metrics (BRISQUE, CORNIA, CQA, and SSEQ).
From this table, we can notice that CORNIA and SSEQ present the best performance on LIVE2
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database, even when compared with full-reference approaches, such as PSNR and SSIM. On the LIVE2
database, the average SROCC values of CORNIA and SSEQ is 0.92, a score similar to some LBP-based
descriptors, such as CLBPSM and BSIF. However, several LBP-based descriptors (LPQ, MLBP, MSLBP,
and OCPP) present a notable performance, being superior to the state-of-the-art methods, achieving
average SROCC values above 0.94 for the LIVE2 database.

Table 7. Average SROCC of 100 runs of simulations on tested image databases using state-of-the-art
IQA methods.

DB DISTORTION PSNR SSIM BRISQUE CORNIA CQA SSEQ

LI
V

E
2

JPEG 0.8515 0.9481 0.8641 0.9002 0.8257 0.9122
JPEG2k 0.8822 0.9438 0.8838 0.9246 0.8366 0.9388

WN 0.9851 0.9793 0.9750 0.9500 0.9764 0.9544
GB 0.7818 0.8889 0.9304 0.9465 0.8377 0.9157
FF 0.8869 0.9335 0.8469 0.9132 0.8262 0.9038

ALL 0.8013 0.8902 0.9098 0.9386 0.8606 0.9356

Average 0.8648 0.9306 0.9017 0.9289 0.8605 0.9268
STD 0.0726 0.0353 0.0469 0.0197 0.0582 0.0192
MAX 0.9851 0.9793 0.9750 0.9500 0.9764 0.9544
MIN 0.7818 0.8889 0.8469 0.9002 0.8257 0.9038

C
SI

Q

JPEG 0.9009 0.9309 0.8525 0.8319 0.6506 0.8066
JPEG2k 0.9309 0.9251 0.8458 0.8405 0.8214 0.7302

WN 0.9345 0.8761 0.6931 0.6187 0.7276 0.7876
GB 0.9358 0.9089 0.8337 0.8526 0.7486 0.7766
PN 0.9315 0.8871 0.7740 0.5340 0.5463 0.6661
CD 0.8862 0.8128 0.4255 0.4458 0.5383 0.4172

ALL 0.8088 0.8116 0.7597 0.6969 0.6369 0.7007

Average 0.9041 0.8789 0.7406 0.6886 0.6671 0.6979
STD 0.0462 0.0495 0.1502 0.1624 0.1053 0.1335
MAX 0.9358 0.9309 0.8525 0.8526 0.8214 0.8066
MIN 0.8088 0.8116 0.4255 0.4458 0.5383 0.4172

TI
D

20
13

AGC 0.8568 0.7912 0.4166 0.2605 0.3964 0.3949
AGN 0.9337 0.6421 0.6416 0.5689 0.6051 0.6040
CA 0.7759 0.7158 0.7310 0.6844 0.4380 0.4366
CC 0.4608 0.3477 0.1849 0.1400 0.2043 0.2006

CCS 0.6892 0.7641 0.2715 0.2642 0.2461 0.2547
CN 0.8838 0.6465 0.2176 0.3553 0.1623 0.1642
GB 0.8905 0.8196 0.8063 0.8341 0.7019 0.7058

HFN 0.9165 0.7962 0.7103 0.7707 0.7104 0.7061
ICQ 0.9087 0.7271 0.7663 0.7044 0.6829 0.6834
ID 0.9457 0.8327 0.5243 0.7227 0.6711 0.6716
IN 0.9263 0.8055 0.6848 0.5874 0.4231 0.4272
IS 0.7647 0.7411 0.2224 0.2403 0.2011 0.2013

JPEG 0.9252 0.8275 0.7252 0.7815 0.6317 0.6284
JPEGTE 0.7874 0.6144 0.3581 0.5679 0.2221 0.2195
JPEG2k 0.8934 0.7531 0.7337 0.8089 0.7219 0.7205

JPEG2kTE 0.8581 0.7067 0.7277 0.6113 0.6529 0.6529
LBD 0.1301 0.6213 0.2833 0.2157 0.2382 0.2290
LC 0.9386 0.8311 0.5726 0.6682 0.4561 0.4460

MGN 0.9085 0.7863 0.5548 0.4393 0.4969 0.4897
MN 0.8385 0.7388 0.2650 0.2342 0.2506 0.2575

NEPN 0.6931 0.5326 0.1821 0.2855 0.1308 0.1275
QN 0.8636 0.7428 0.5383 0.4922 0.7242 0.7214
SCN 0.9152 0.7934 0.7238 0.7043 0.7121 0.7064
SSR 0.9241 0.7774 0.7101 0.8594 0.8115 0.8084
ALL 0.6869 0.5758 0.5416 0.6006 0.4925 0.4900

Average 0.8126 0.7172 0.5238 0.5361 0.4794 0.4779
STD 0.1814 0.1135 0.2145 0.2258 0.2191 0.2186
MAX 0.9457 0.8327 0.8063 0.8594 0.8115 0.8084
MIN 0.1301 0.3477 0.1821 0.1400 0.1308 0.1275
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Figure 27. Distribution of average SROCC after 100 simulations using different state-of-the-art methods.
(a) LIVE2. (b) CSIQ. (c) TID2013.



J. Imaging 2018, 4, 114 35 of 41

By comparing Table 7 with Tables 4–6, we can notice that LBP-based NR-IQA approaches
present better performance also for the CSIQ and TID2013 databases. For the CSIQ database,
we can observe that, on average, the best state-of-the-art NR-IQA method is BRISQUE, followed
by SSEQ and CORNIA. The average SROCC scores are 0.7406, 0.6979, and 0.6886 for BRISQUE,
SSEQ, and CORNIA, respectively. However, the LPQ, BSIF, LVP, OCLBP, OCPP, SLBP, MLBP, MLTP,
and MSLBP descriptors present better results for this CSIQ database. Similarly, for the TID2013
database, the best state-of-the-art method is CORNIA, which presents an average SROCC of 0.5361.
This value is outperformed by several LBP-based descriptors, such as LVP (0.5428), OCLBP (0.5902),
OCPP (0.7035), MLBP (0.5284), MLTP (0.5652), MSLBP (0.5919), and LPQ (0.5518).

3.6. Prediction Performance on Cross-Database Validation

To investigate the generalization capability of the studied methods, we performed a cross-database
validation. This validation consists of training the ML algorithm using all images of one database and
testing the them on the other databases. Table 8 depicts the SROCC values obtained using LIVE2 as
the training database and TID2013 and CSIQ as the testing databases. To perform a straightforward
cross-database comparison, only the shared subset of distortions are selected from each database.

Table 8. SROCC cross-database validation, when models are trained on LIVE2 and tested on CSIQ
and TID2013.

Database Distortion BRISQUE CORNIA CQA SSEQ LVP OCPP MLBP MLTP MSLBP

TID2013

JPEG 0.8058 0.7423 0.8071 0.7823 0.7827 0.8875 0.8378 0.8472 0.8779
JPEG2k 0.8224 0.8837 0.7724 0.8258 0.8718 0.9246 0.9219 0.9046 0.9293

WN 0.8621 0.7403 0.8692 0.6959 0.7781 0.9001 0.8351 0.6881 0.8766
GB 0.8245 0.8133 0.8214 0.8624 0.8873 0.8651 0.8849 0.8693 0.8958

ALL 0.7965 0.7599 0.8214 0.7955 0.8365 0.8814 0.8661 0.8137 0.8776

CSIQ

JPEG 0.8209 0.7062 0.7129 0.8141 0.8334 0.9091 0.9012 0.8784 0.9151
JPEG2k 0.8279 0.8459 0.6957 0.7862 0.7716 0.9101 0.8744 0.8914 0.8846

WN 0.6951 0.8627 0.6596 0.4613 0.8229 0.9107 0.8498 0.7739 0.8809
GB 0.8311 0.8815 0.7648 0.7758 0.8753 0.9188 0.9047 0.8712 0.9115

ALL 0.8022 0.7542 0.7114 0.7403 0.8359 0.8921 0.8608 0.8628 0.8723

Based on the results in Table 8, we can notice that OCPP outperforms other methods for almost
all types of distortions. For TID2013, the OCPP outperforms the other methods for 3 out of the 5
distortions, while for CSIQ it outperforms the other methods for 4 distortions out of the 5 distortions.
OCPP is followed by MSLBP, which achieves the best results in the cases where OCPP is not the
best. The cross-database validation test indicates that, in general, texture descriptors have a better
generalization capacity, when compared to the tested state-of-the-art methods.

3.7. Simulation Statistics

In order to investigate the stability of the mean over the simulations, we generated some box
plots depicted inf Figure 28. We chosen the BSIF, LCP, CLBP, and LPQ because these descriptors were
among the best analyzed in the last section. Based on this figure, we can notice that the mean changes
over the simulations. More specifically, the inter-quartile ranges increase over the simulations for
BSIF and LPQ on LIVE2 database. On the other hand, this behavior is not the same for LCP and
CLBP descriptors. The pattern on CSIQ and TID2013 are more similar. Further studies concerning the
number of simulations that generates a stable distribution are suggested as future works.
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Figure 28. Stability of the mean SROCC over the simulations after 10, 50, 100, 500, and 1000 simulations
using different descriptors.

4. Conclusions

In this paper, we compared three basic LBP (LBPri, LBPu, and LBPriu2) with eight different
parameter combinations each. This comparison was performed to verify whether LBP can be used as a
feature descriptor in image quality assessment applications. Preliminary results show that, although
LBP can be used in image quality assessment, the performance varies greatly for each distortion and
the its parameters. Based on these results, we investigated other 14 texture descriptors, which are
variants of the basic LBP. When tested using the proposed framework, BSIF, LPQ, LVP, and CLBP
present a good mean correlation value for the LIVE2 database, but their performances decrease for
the CSIQ and TID2013 datasets due to color and contrast distortions. Results show that multiscale
approaches have a substantially better quality prediction performance. Among the tested multiscale
approaches, the MSLBP descriptor, which incorporates visual saliency, has the best performance.
While MSLBP has a performance that is similar to the performance obtained with the OCPP descriptor
for the LIVE2 database, the OCPP presents the best performance for the remaining databases.
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