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The Evolution of Video Quality Measurement:
From PSNR to Hybrid Metrics

Stefan Winkler and Praveen Mohandas

Abstract—This paper reviews the evolution of video quality multiplexers, codecs, streamers, routers, switches. All
measurement techniques and their current state of the art. We of them process the video in some way, which can
start with subjective experiments and then discuss the various potentially affect its quality.

types of objective metrics and their uses. We also introduce V- Vi | tion i | r ¢
Factor, a “hybrid” metric using both transport- and bitstream + ViSual perception s even more complex. It we are (o mea-

information. Finally, we summarize the main standardization sure quality in a meaningful way, we need to understand
activities, such as the work of the Video Quality Experts Group how people perceive video and its quality.

(VQEG), and we take a look at emerging trends in quality theqe two issues and metrics addressing them are also the
measurement, including image preference, visual attention, and . .
audiovisual quality. focus of this review.
The paper is organized as follows. Section Il briefly intro-
duces subjective quality assessment, which forms the bench
|. INTRODUCTION mark for objective metrics. Section Ill discusses objexctiv
UALITY of experience (QoE) has become a ternfluality metrics, various classifications and some speaific i
Q commonly used to describe the application- and usdilementations. Section 1V introduces V-Factor as an exampl
oriéhted quality of video and multimedia services. QoE a@f a hybrid metric. Section V reviews standardization até&s
tually encompasses many different aspects — video qu3|ityl’e|ated to video quality. Section VI takes a look at somemece
just one of them, arguably one of the most important [1]. trends in quality measurement, and Section VII concludes th
Unfortunately, quality in this context is a rather ill-dedoh Paper.
concept — we list just some of the numerous factors contribut
ing to QOE here [2]{4]: Il. SUBJECTIVE QUALITY ASSESSMENT

° Ind|V|duth!ntr]e:jeits OT thet:thwerl, su(;:r]: as fa\;orge Ft’_ro'_The reference for multimedia quality are subjective ex-
grams, which determine the level and focus ot attentiof, iments  which represent the most accurate method for
« Quality expectations of the viewer, for example a featu

il di . h i hed @otaining quality ratings. In subjective experiments, anber
%I:bislgrgg\r/]i?:e'm a cinema vs. a short clip watched on g “subjects” (typically 15-30) are asked to watch a set of

. : . . video clips and rate their quality. The average rating over a
« Video experience of the viewer, which also determin P d ¥ 9 9

) : . NN&Gewers for a given clip is also known as the Mean Opinion
quality expectations (once you have seen h|gh-olef|n|t|c§1core (MOS)

content it's hard to go back);
« Display type (CRT, LCD, etc.) and properties (size[.io
resolution, brightness, contrast, color, response time);
« Viewing setup and conditions, such as viewing distan

Since each individual has different interests and expecta-

ns for video, the subjectivity and variability of the wier

ratings cannot be completely eliminated. Subjective exper

. L ffhents attempt to minimize these factors through precise
or amblent/exterlor I'g_ht’_ _ .instructions, training and controlled environments. Yeisi

» Quality and synchronization of the accompanying aUOII?mportant to remember that a quality score is a noisy mea-

* Ipteracuon with the service or display dewpe g 280 rement that is defined by a statistical distribution nathan
time, remote control, electronic program guide). an exact number

As the wide variety and subjectivity of some of these factors There are a wide variety of subjective testing methods.
indicate, the measurement (and ultimately optimizatidrihe Psychophysics provides the tools for measuring the paraept
quality of digital video systems is a highly complex problemyerformance of subjects [5], beginning with visibility ésh-
Most of today’s quality metrics only account for a smalb|4s and just-noticeable differences (JND’s), which aresmo
subset of the factors listed above and focus on measurigigiaple for small impairments. The ITU has formalized dire
the visual fidelity of the video in terms of the distortion%ca"ng methods in various recommendations [6]-[8], which
introduced by various processing steps (mainly compressigre often used in practice for larger quality ranges. They
and transmission). Even if we constrain ourselves to thiﬂ‘-‘mosuggest standard viewing conditions, criteria for the ctizla
well-defined problem space, two challenging issues remaingf opservers and test material, assessment proceduresatnd

« Video systems are complex and consist of many compgnalysis methods. Recommended testing procedures include

nents, including capture and display hardware, convertefigiplicit comparisons such as Double Stimulus Continuous
, , _ Quality Scale (DSCQS), explicit comparisons such as Double
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or Absolute Category Rating (ACR). The procedure used fa
a given experiment is generally selected as a function of t
application, the quality range, and the viewer tasks. Mor
details on subjective testing can be found in [9], for exampl £

Subjective experiments are invaluable tools for assessir|
multimedia quality. Their main shortcoming is the requiesth  §
for a large number of viewers, which limits the amount of#
video material that can be rated in a reasonable amount
time; they are neither intended nor practical for 24/7 insee
monitoring applications. Nonetheless, subjective expenits B¥EEZES 5 z
remain the benchmark for any objective quality metric. (a) (b)

Fig. 1. lllustration of the influence of impairment type and irapntent on
I11. OBJECTIVEQUALITY METRICS the visibility of distortions (see text for details). Botmages have identical
PSNR, yet their perceived quality is very different.
Objective quality metrics are algorithms designed to obxara

terize the quality of video and predict viewer MOS. Differen
types of objective metrics exist [10]. For the analysis of
decoded video, we can distinguiglata metrics which mea-
sure the fidelity of the signal without considering its carte
and picture metrics which treat the video data as the visual
information that it contains. For compressed video dejiver
over packet networks, there are afscket-or bitstream-based
metrics which look at the packet header information and the
encoded bitstream directly without fully decoding the wde
Furthermore, metrics can be classified into full-referemae
reference and reduced-reference metrics based on the amoun
of reference information they require. These classificetiare
discussed next.

« Data metrics aralistortion-agnostic Distortions may be
more or less apparent to the viewer depending on their
type and properties. The human visual system is not
sensitive to the high-frequency noise inserted into the
left image. The noise in the right image is a well-
localized, lower-frequency noise, whose pattern is much
more apparent.

o Data metrics arecontent-agnostic Viewer perception

varies based on the part of the image or video where the

distortion occurs. The noise in the left image is contained
almost exclusively in the bottom region of the image,
where we already have a lot of image activity from the
content itself (edges, texture from the rocks and sea). The

A. Data Metrics image activity masks the distortion in this region. The

noise in the right image is contained in a region devoid of

content activity (the smooth sky). Because little masking
is present there, distortions stand out immediately.

The image and video processing community has long been
using mean squared error (MSE) and peak signal-to-noise rat
(PSNR) as fidelity metrics (mathematically, PSNR is just a
logarithmic representation of MSE). There are a number of Using MSE and various modifications as a basis, a number
reasons for the popularity of these two metrics. The forsmul&f additional data metrics have been proposed and evaluated
for computing them are as simple to understand and impleméht]- Although some of these metrics can predict subjective
as they are easy and fast to compute. Minimizing MSE is al§atings quite successfully for a given compression teakig
very well understood from a mathematical point of view. Ovegistortion type or scene content, they are not reliable for
the years, video researchers have developed a familiaiity wevaluations across techniques. MSE was found to be an
PSNR that allows them to interpret the values immediategccurate metric for additive noise, but it is outperformed b
There is probably no other metric as widely recognized ¥ision-based quality metrics for coding artifacts [12].

PSNR, which is also due to the lack of alternative standardsThe network quality of service (QoS) community has
(cf. Section V). equally simple metrics to quantify transmission errorsshsu

Despite its popularity, PSNR only has an approximate relgs bit error rate (BER) or packet loss rate (PLR). Again,
tionship with the video quality perceived by human obsesyerthese are relevant for data links, where every bit and pasket
simply because it is based on a byte-by-byte comparisoreof #qually important, but not for video delivery. The reasonis f
data without considering what they actually represent. RSNheir popularity are similar to those given for PSNR above.
is completely ignorant to things as basic as pixels and th&roblems arise when relating these measures to perceived
spatial relationship, or things as complex as the inteaticet quality; they were designed to characterize data fidelity, b
of images and image differences by the human visual systedgain they do not take into account the content, i.e. the

Let's look at the example shown in Figure 1. Both image®eaning and thus the visual importance of the packets and
have the same PSNR, yet their perceived quality is vebjts concerned. The same number of lost packets can have
different — it is hard to see anything wrong with Figure 1(arastically different effects on the video content, defpegd
whereas the distortions are quite obvious in Figure 1(bgr@h on which parts of the bitstream are affected.
are two main reasons for this discrepancy, both of which are
closely linked to the way the human visual system processes s is not only a spatial phenomenon; masking also occurs high
information: temporal activity, such as high-motion scenes or scene cuts.
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B. Picture Metrics losses on video quality. This development is the result of in
Due to the problems with simple data metrics Outlineﬁreasmg video service delivery over IP networks, for ex@mp
A ._Internet streaming or IPTV.

above, much effort has been spent on designing better Vlsualgecause losses directly affect the encoded bitstream, such
quality metrics that specifically account account for trfeats metrics are often based )é)n arameters that can be ex{racted
of distortions and content on perceived quality. The apghiea P . . .
in metric design can be classified in two groups namelyfrom the transport stream and the bitstream with no or little

' uaecoding. This has the added advantage of much lower data

vision mpqlelmg appr'oacbnd anengineering approa'c|[113f]. rates and thus lower bandwidth and processing requirements
The vision modeling approach, as the name implies, IS

) . . colmpared to metrics looking at the fully decoded video. gsin
based on modeling various components of the human visua . o . ;
such metrics, it is thus possible to measure the quality of

system (HVS). HVS-based metrics try to incorporate aspects . : 4
- . . any video streams/channels in parallel. At the same time,
of human vision deemed relevant to picture quality, suc;[rﬁ . .
as color perception, contrast sensitivity and pattern ingsk - oo metrics have to be adapted to specific codecs and
usin moFc)ieIs apnd d,ata from psycho hysical epx erimen?sS [1Hﬁtwork protocols. “Hybrid" metrics use a combination of
9 ) . psychophysic: (el packet information, bitstream or even decoded video astinpu
Due to their generality, these metrics can in principle bedus

for a wide variety of video distortions. HVS-based metriassd Eglljtrg 2 illustrates the different classes of metrics aralr th
back to the 1970's and 1980's, when Mannos and Sakrison
[15] and Lukas and Budrikis [16] developed the first image
and video quality metrics. Later well-known metrics in thig Packet headerS] [ Bitstream ] [ Video signal ]
category are the Visual Differences Predictor (VDP) by Dal! : : '
[17], the Sarnoff JND (just noticeable differences) mebic : i

Lubin [18], van den Branden Lambrecht’s Moving Picturq Packet-based i

Picture
Metrics

Quality Metric (MPQM) [19], and the author's own perceptua] ~ Metrics
distortion metric (PDM) [20]. -

The engineering approach on the other hand is bas Bitstream-based Metrics
primarily on the extraction and analysis of certain feature | . ] .
artifacts in the video. These can be either structural ima ' ' , —
elements such as contours, or specific distortions that 4 Hybrid Metrics
introduced by a particular video processing step, comjmess
technology or transmission link, such as block artifactse T Fig. 2. Classification of packet-based, bitstream-basexynei and hybrid
metrics look at how pronounced these features are in tRE"cs (adapted from ITU-T).
video to estimate overall quality. This does not necessaril . .
mean that such metrics disregard human vision, as they oftenSome examples of packet- a_nd brgstream-basgd_ me_trlcs are
consider psychophysical effects as well, but image coratedt Verscheure et al. [24], who investigated the joint impact

distortion analysis rather than fundamental vision madgls of packet Io_ss rate and MPEG-2 bitrate on V|deq quality,
the conceptual basis for their design or Kanumuri et al. [25], [26], who used various bitstream
' r%rameters such as motion vector length or number of slice

The engineering approach has gained popularity in reC(ﬁ)sses to predict the visibility of packet losses in MPEGAd a

years. The author's own metrics [21] look for specific Spat'@«.zm video. V-Factor, the metric introduced in Section IV

and temporal artifacts in the video, such as blockiness, b uelow also belonas in this catedor
or jerkiness, which are then combined into an overall gyali ' 9 gory.
prediction. Wang et al.'s Structural Similarity (SSIM) ied

[22] computes the mean, variance and covariance of smll Reference Information

paiches inside a frame and combines the measurements it 5jity metrics are generally classified into full-refezen

a distortion map. Motion estimation is used for a weightingq reference and reduced-reference categories basedeon th
of the SSIM index of each frame in a video. Pinson angdm,ynt of information required about the reference vide). [1
Wolf’s VQM video quality metric [23] divides sequences into g jireference (FR) metrics perform a frame-by-frame com-
spatio-temporal blocks, and a number of features measuriigtison petween a reference video and the test video. They
the amount and orientation of activity in each of these B0oClqire the entire reference video to be available, usually

are computed from the spatial luminance gradient. The featu;, unimpaired and uncompressed form, which is quite a

extracted from test and reference videos are then compaﬁ%%vy restriction on the practical usability of such metric

using a process similar to masking. Furthermore, full-reference metrics generally imposeexise
spatial and temporal alignment of the two videos, so that
every pixel in every frame can be matched with its counteérpar
in the other clip. Temporal registration in particular isitqu
While a lot of effort in video quality measurement has strong restriction and can be very difficult to achieve in
been devoted to evaluating compression artifacts fromagsto practice, because of frame drops, repeats, or variabley dela
“base-band” video, there is also a growing interest in dyaliintroduced by the system under test. Aside from the issue of
metrics specifically designed to measure the impact of mtwaspatio-temporal alignment, full-reference metrics ulsudb

C. Packet- and Bitstream-based Metrics
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not respond well to global shifts in brightness, contrast or The V-Factof metric is based on deep packet inspection of

color, and require a corresponding calibration of the videahe video stream (see Figure 3). It analyzes the bitstream in

MSE/PSNR and HVS-based metrics typically belong to thigal time to collect static parameters such as picture side a

class. frame rate as well as dynamic parameters such as the variatio
No-reference (NR) metrics analyze only the test videof quantization steps. Video quality prediction by the naetr

without the need for an explicit reference clip. This makes based on the following:

them much more flexible than FR metrics, as it can be difficult e The impact of video impairments due to the content char-

or impossible to get access to the reference in some cases acteristics, the compression mechanism and bandwidth

(e.g. video coming out of a camera). They are also completely constraints.

free from alignment issues. The main challenge of NR metrics, The impact of network impairments such as jitter, delay

lies in telling apart distortions from content, a distilocti and packet loss on the video, including spatial and
humans are usually able to make from experience. NR metrics temporal loss propagation.

always have to make assumptions about the video content

and/or the distortions of interest. With this comes the ris} Video Coding Decoded

of confusing actual content with distortions (as an exampl{ TS Headers ] [PES Headers] [Layer (VCL)J [ Video ]

a chessboard could be interpreted as block artifacts under l l

certain conditions). The majority of NR metrics are base

on estimating blockiness [27], which is the most prominer| Loss & Jitter Timing veL Picture

artifact of block-DCT based compression methods such Analysis Analysis Analysis Metrics

H.26x, MPEG and their derivatives. v v v v
Reduced-reference (RR) metrics are a compromise betwe V-Factor

FR and NR metrics. They extract a number of features frol-

the reference and/or test video, and the comparison of the t
P \IéY 3. V-Factor inspects different sections of the videean, namely

. g.
clips is then based only on those feat_ures- E>_<ampl_es OffRtUne transport stream (TS) headers, the packetized elerestraam (PES)
are the amount of motion or spatial detail. This approacieaders, and the video coding layer (VCL), in addition todeeoded video

makes it possible to avoid some of the assumptions andlpitfaiianal.

of pure no-reference metrics while keeping the amount of ] o

reference information manageable. Reduced-referencecmet 1he underlying model used for the objective measurement

also have alignment requirements, but they are typicatig 107 video impairments is based on a paper by Verscheure et

stringent than for full-reference metrics, as only the atied @l [24], who proposed models for the impact of packet loss

features need to be aligned. rate, MPEG-2 quantizer scale and data rate on quality ubg t
These three classes of metrics also have different opaeitio™OVving picture quality metric (MPQM). We have generalized

uses. FR metrics are most suitable for offline video qualiff€Se¢ models to state-of-the-art codecs such as H.264, and

measurement such as codec tuning or lab testing, wh gher enhanced them to take into account the complexity of

conditions can be well controlled, and where a detailed afféf Video content. Networks impairments are also analyzed

precise analysis of the video is more important than imntedidn réal time in order to provide the model with packet loss

results. NR and RR metrics are better suited for monitorirgfoPability ratio (single loss, bursty loss) through a eerof

of in-service video systems, where real-time measurenmeht d'dden Markov models. The models were optimized for real-

alarm triggering are essential. RR metrics still requireaakp timeé multi-channel assessment of video quality.

channel and access to the reference at some point.

A. Bitstream Analysis

V. V-FACTOR MQUANT (the quantizer scale on a macroblock basis in an

We now introduce a real-time video quality metric that US§§pEG.-2 video stream) provides a first approximation of how
the transport stream and the bitstream as input. The methggeq compression affects video quality. MQUANT was shown

does not require a reference and works at the packet levgl.exhibit an approximately linear relationship to quality
It combines network impairments with information obtainegipeG-2 clips [24].

from the video stream. The algorithm described here focusesye account for spatial and temporal image coding com-

mainly on MPEG-2 and H.264 video streaming over IBjexity and the impact of packet loss on the spatial and
networks, but it can be adapted to other codecs and othghnoral content at the coding layer. Video quality without
applications such as video conferencing as well. any network impairments is influenced by video coding layer
A compressed video stream can be viewed as a seqUeRgBL) complexity. The VCL complexity is modeled using
of packets that are carrying video and audio informatiofyantizer values, motion vector information and intrafint
along with data. De-multiplexing such streams is required bredicted frame/slice ratios.
order to identify the packets that carry video information. aq gn example, videos with a lot of scene changes would
As an example, assessing video packet loss from IP losggge g very high VCL complexity. The scene changes can

directly will provide inaccurate measurements for an MPEGse detected in different ways: a Scene Information Message,
2 transport stream due to the fact that a given IP packet may

not contain any video data. 2 parts of this technology are patent-pending.
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which labels pictures with scene identifiers; an instartase B. Network Losses

decoding refresh, where all slices are intra-coded; omintr | gsses can occur either due to IP packet loss in the network,
period changes resulting from I-slice insertion. or due to de-jitter buffer under-/over-flow. In parallel toet
Figure 4 depicts the video coding layer complexity analysigc| analysis described above, the content of each packet is
for H.264 streams. The model performs bandwidth and banfspected in order to determine if the packet contains part
width variation analysis as well as an inspection of slices aof 5 reference frame or slice, or a predicted frame, slice or
macroblocks in order to analyze the variation of the quantiz macroblock. This analysis is again codec-specific and mesiu

combined with a loss model. a first statistical model of the distribution of I, B, and P (or
Sl and SP) frames/slices/macroblocks. Using counters from
W bamee e L ,l Banawiah | the complexity analysis, a second statistical model of the
| monitor model distribution of the quantizer values is produced that letads
A a combined model of the bandwidth and bandwidth variation
| ool | o.a Complexity | for a video stream. Furthermore, inter/intra macroblockd a
" |__monitor mode! motion vectors are analyzed; if high motion loss is detected
- A the loss factor is updated accordingly.
Slice / MB N . . . .
--»{ packetloss [-- Lossmodel f----.__ i By tracking the inserted time stamps (depending on the en-
monitor T capsulation such as MPEG-2 Transport Stream or RTP) as well

Codec-specific as the time stamp carried by some packets, and comparing the
i e " difference with a de-jitter buffer, we can produce a jittevdal
: ------- : i that is used to assess the packet loss probability due to high

Video coding layer (VCL) V-Factor jitter. The system then assesses whether the computed loss
probability will affect a reference or non-reference frasfiee.
Fig. 4. H.264 video coding layer (VCL) complexity model. The rabd
performs bandwidth and bandwidth variation analysis as agHln inspection ]
of slices and macroblocks, combined with a loss model. C. Encryption
When the video stream is encrypted, as is often the case in
The VCL input is read from the Network Abstractioncommercial video distribution networks, the VCL Raw Byte
Layer (NAL)® or transport layer. The VCL packet size issequence Packet (RBSP) segments are not decodable. This
used to compute instantaneous and average bandwidth. ffigoses a severe limitation on computing video qualityhbot
bandwidth model is constructed using a 3-state (bandwiddy traditional metrics and for hybrid metrics, as the impac
low/average/high) Markov model. of losses and loss propagation at the VCL layer cannot be
For every macroblock, the VCL complexity model is runmeasured directly.
Macroblock and slice quantization parameters are read froma possible solution to this problem is to perform monitoring
the NAL/transport layer by parsing the slice data inside thsefore encryption (e.g. at the video head-end) as well as
VCL. A VCL complexity quantization transition probability downstream where the video is encrypted. Video timing infor
matrix is computed, and limiting state probabilities areneo mation is obtained either from the Program Clock Reference
puted. VCL parameters are also monitored for scene transiti (PCR) or the Presentation/Decode Time Stamps (PTS/DTS)
and picture quality. Inter/intra macroblock types are wredi  from both the head-end and downstream locations; alterna-
to determine scene transitions and quantization parametiiely, GPS/NTP time stamping for correlating head-end and
Computing VCL complexity also follows a Markov procesgiownstream information can be used. This timing infornmatio
similar to the one for bandwidth, but limited to two statesalong with VCL information from before encryption and loss
The transition probabilities are derived from counterst thavent/distribution information from downstream can beduse
are incremented each time a certain macroblock/slice typeiri a reduced-reference manner for correlating the effetts o
detected. IP packet loss on the quality of the video content even in an
The visual impact of packet losses on the video contentesicrypted environment.
expressed by combining the video complexity model with a
loss model. It includes an analysis of the part of the strdsan t D. Results
is lost and its impact on video quality. This allows the model
to distinguish between losses involving intra-/interehcted

Some V-Factor measurements are shown in Figure 5 to
macroblocks, I-slices, B-slices, P-slices, high motiorere demonstrate how the method combines transport and video
' ' ' ’ stream information to compute quality. This particular ex-

cuts, etc. L :
The overall V-Factor value, which represents a MOS esﬁ‘-mpIe highlights how different losses and loss types (I-, P-

mate, is computed by a codec-specific curve fit equation usiﬂg B-slices) have different impact on quality predictioms,

inputs from the bandwidth model, the VCL complexity modef dition to the dependence on video content and complexity
and the loss model characteristics such as the quantizer scale (MQUANT) aed th

number of scene cuts during loss periods.

3 The Network Abstraction Layer (NAL) is an intermediate lapetween
the video coding layer and the transport layer. It was intoedl in H.264 to
allow for more flexible packaging of the elementary streams.
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Fig. 5. V-factor MOS prediction (top plot) together with eefed loss
parameters and video characteristics. Different loss type®- or B-slices)
have different impact on quality. Quantizer scale (MQUANTascene cuts
are shown as examples of bitstream and content measuremesty. data
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V. VIDEO QUALITY STANDARDS

Few studies exist that compare the prediction performance
of different metrics. Formal evaluations of video qualitgtm
rics on common test material have been conducted by the
Video Quality Experts Group (VQEG)which was established
in 1997.

The first round of VQEG tests focusing on full-reference
metrics for TV applications (“FR-TV") was inconclusive [R8
Nonetheless, one of the outcomes of this round was a database
of test clips with associated subjective ratings that s&f-
resents the only such collection that is publicly availafile
can be found on the VQEG web site). A follow-up test was
successfully completed in 2003 [29] and has become the basis
for two ITU recommendations [30], [31]. The best metrics in
this second round achieved correlations as high as 94% with
MOS, thus significantly outperforming PSNR with correlato
of around 70%. Unfortunately, neither the test sequences no
the subjective data of the second round are public. Bothdsun
of tests dealt only with full-reference metrics and focused
MPEG-2 compression for digital TV broadcast, and neither
included IP networks.

VQEG has also conducted an evaluation of metrics in a
“multimedia” scenario, which is targeted at lower bitratesl
smaller frame sizes (QCIF, CIF, VGA) as well as a wider
range of codecs and transmission conditions (the final tepor
should be available at the time of publication of this paper)
Furthermore, VQEG is working on evaluations of reduced-
and no-reference metrics for television (“RR/NR-TV”) asliwe
as an HDTV test. Recently the group has begun to develop
tests for “hybrid” metrics, which look not only at the decdde
video as in the other tests, but also at the encoded bitstream
(cf. Section IlI-C above).

In addition to VQEG, various ITU study groups work on
the standardization of video quality metrics. ITU-T Study
Group 9, for example, is closely aligned with VQEG and
uses the group’s test results for its recommendations; st ha
also standardized methods for video registration and alegn
[32]. ITU-T Study Group 12 is working on a non-intrusive
parametric model for the assessment of multimedia stregamin
(P.NAMS for short), which uses packet and codec information
as inputs, but explicitly excludes any payload information
It also standardized an opinion model for videophone ap-
plications [33]. Furthermore, there is an ITU IPTV Global
Standards Initiative (GSP,whose task is to coordinate exist-
ing IPTV standardization activities. Among other thingsisi
working on recommendations for performance monitoring and
quality of experience requirements for IPTV.

Some other groups also look at video QoE from various
angles and in different depth. The DSL Forum has published
a report on QoE requirements [34]; the Video Services Forum
(VSF) has recommended transport-related metrics for video
over IP [35] and recently started an activity group on QoE
metrics; and at ATIS, the QoS Metrics Task Force within the
IPTV Interoperability Forum is looking at QoE models for
video, audio, multimedia and transactions.

4 See http://www.vgeg.org/ for more information.
5 See http://www.itu.int/ITU-T/gsi/IPTV/ for more informati.
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VI. TRENDS Various studies have been conducted regarding audio-video
synchronization. In actual lip-sync experiments true teirth

name (showing content with a human speaker), viewers per-
As mentioned earlier, many existing quality metrics havgejve audio and video to be in sync up to about 80 ms of

A. Preference and Image Appeal

two important shortcomings: delay [46]. There is a consistently higher tolerance foreuid
« They measure video fidelity, i.e. how closely a test cliphead of audio rather than vice versa, probably because this
resembles the original. is also a more natural occurrence in the real world (light

« They measure video degradation, i.e. the test videotiavels faster than sound). Similar results were obtaimed i
assumed to be of worse quality than the reference. experiments with non-speech clips showing a drummer [47];

However, in some cases processing can improve the perceit® same study found the noticeable delay to decrease with
quality of a video, even if the result looks less like th&lrumming frequency.

original. Video fidelity, even considering the charact#r®  Studies on audio-video quality interactions have focused
of the human visual system, is clearly not a good qualifyainly on low-bitrate applications such as mobile videoeven
benchmark in such situations. the audio stream can use up a significant portion of the total
For example, colorful, well-lit, sharp pictures with highpjtrate [48], [49]. In one study, we carried out subjective
contrasts are considered attractive, whereas low-qualitk experiments on audio, video and audiovisual quality [50§ W
and blurry pictures with low contrasts are often rejecte8l.[3 focused on MPEG-4 AVC/H.264 and MPEG-4 AAC video
This is true even if the images are enhanced to the extent that audio codecs to encode our test material at total kstrate
they look somewhat unnatural [37]. Especially sharpness agf up to 72 kb/s. We found that both audio and video quality
colorfulness have been identified as relevant featuresisn t@ontribute significantly to perceived audiovisual qualfydio
respect. and video quality can be evaluated individually and then
Quantitative metrics of this “image appeal” were indeegombined using linear or bilinear models to predict audiosi
shown to improve the quality prediction performance of ‘Didequa"ty with high accuracy, as shown in Figure 6.
metrics [38]. Another example is the no-reference quality

metric for degraded and enhanced video described by Caviede

and Oberti [39]. It is built from metrics for desirable fesds 1 : ‘
(sharpness, contrast, reduced artifacts) as well as nsinratiée Eg;ﬁsﬁ%ﬁl?gﬁ;mion
features (noise, clipping, ringing, blockiness) and aatetor ool — ]
the contributions of both types to video quality. '
. 5 0.8f

B. Attention B

Another important aspect in video quality evaluation is the § 0.7}
fact that people only focus on certain regions of interest in
the video, e.g. persons, faces or moving objects. Outsige th
region of interest, our sensitivity to distortions is sigrantly o
reduced. Most objective quality metrics ignore this andghei I ﬂ.
distortions equally over the entire frame. Only few metrics 05— v AV A ATVEASY

attempt to model the focus of attention and consider it for
computing the overall video quality, for example througk thFig. 6.  Correlations of different models for audiovisual lifya[50]. A:
“ ian” i ; ; Prediction from audio quality only; V: Prediction from videguality only;
proce_ss of “foveation [40]’ orusing ObJeCt/face segmaoa A-V: Multiplicative model; A+V: additive model; A+V+AV: Bilinear model.
techniques [41].
Due to the idiosyncrasies of viewer attention mentioned

at the beginning of the paper, there is always the risk of L . 5
viewers looking at regions that were not predicted by the Other research on audiovisual quality [51]-{54] has foduse

. ) S . ’. . on video-conferencing applications (i.e. head-and-stersl
met_ncs. While this “Sk. may be Iowgr for wdgo t.han' I ISclips) or simulated artifacts. The test material used irs¢he
for images, understanding and modeling attention in video |

still a relatively new area of research- some recent pa hstudies is quite different in terms of content range and dis-
yr . o PARIS N rtions. Despite these significant differences, the nedét
addressed the issue in more detail [42]-[45].

tained match rather well in terms of coefficients and préaiict
performance.

C. Audiovisual Quality We also used no-reference artifact metrics for audio and

We rarely watch video without sound. Therefore, compreddeo to predict audiovisual MOS [55]. The predictions of
hensive audiovisual quality metrics are needed that amalfthe video metrics achieve correlations of above 90% with
both modalities of a multimedia presentation. Audiovisualideo MOS; the audio metrics reach 95%. When audio and
quality actually comprises two factors. One is the synchreideo metrics are combined according to one of the models
nization between the two media, a.k.a. lip-sync; the otker for audiovisual MOS mentioned above, audiovisual MOS can
the interaction between audio and video quality. be predicted with good accuracy (about 90% correlation).
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VIlI. CONCLUSIONS [17] S. Daly, “The visible differences predictor: An algiin for the assess-
. . . ment of image fidelity,” inDigital Images and Human VisigrA. B.
Although data metrics such as PSNR are still widely used \yaison, Ed.~ MIT Press, 1993, pp. 179-206.

today, significant improvements in prediction performandes] J. Lubin and D. Fibush, “Sarnoff JND vision model,” T1A1Working

and/or versatility can only be achieved by QoE metrics. While Group Document #97-612, ANSI T1 Standards Committee, 1997.
9] C.J.van den Branden Lambrecht and O. Verscheure, “Brrakequality

a lot of work in the past has focused on full-reference me,tric[l

measure using a spatio-temporal model of the human visual system,

much remains to be done in the areas of no-reference and Proc. SPIE Digital Video Compression: Algorithms and Texibgies

reduced-reference quality assessment. The same can be
for the quality evaluation of video transmission over natgo

with packet losses and bit errors. Here the development of
reliable metrics is still at the beginning, and many issuésll
remain to be solved. Bitstream- and packet-based metrics
appear particularly promising for practical use due to rthep2]
lower computational complexity and better scalability.
There is a need for reliable perceptual quality measurem
in all video applications, and it is becoming more pressing
as the number and complexity of video systems increases. As

we have highlighted in this review, many interesting QoE me

sajavol- 2668, San Jose, CA, January 28-February 2, 1996, pp-4430
[20] S. Winkler, “A perceptual distortion metric for digitalolor video,” in

Proc. SPIE Human Vision and Electronic Imagjingl. 3644, San Jose,
CA, January 23-29, 1999, pp. 175-184.

S. Sisstrunk and S. Winkler, “Color image quality on the Intefhiet
Proc. SPIE Internet Imagingvol. 5304, San Jose, CA, January 19-22,
2004, pp. 118-131, invited paper.

Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessméatsed on
structural distortion measuremengignal Processing: Image Commu-
nication, vol. 19, no. 2, pp. 121-132, February 2004.

M. H. Pinson and S. Wolf, “A new standardized method fojectively
measuring video quality/EEE Transactions on Broadcastingol. 50,
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24] O. Verscheure, P. Frossard, and M. Hamdi, “User-origi@eS analysis

in MPEG-2 delivery,”Real-Time Imagingvol. 5, no. 5, pp. 305-314,

surement approaches and improvements have been proposed,1999.
and several standards are in the making. Nonetheless, we &tk S- Kanumuri, P. C. Cosman, A. R. Reibman, and V. A. Vaisharapay
still a long way from video quality metrics that are widely

“Modeling packet-loss visibility in MPEG-2 videofEEE Transactions
on Multimedia vol. 8, no. 2, pp. 341-355, 2006.

applicable and universally recognized. [26] S. Kanumuri, S. G. Subramanian, P. C. Cosman, and A. R. Reibma
“Predicting H.264 packet loss visibility using a generadizlinear
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