AVRDUDE

A program for download/uploading AVR microcontroller flash and eeprom.
For AVRDUDE, Version 4.2.0, 5 September 2003.

by Brian S. Dean

(Send bugs and comments on AVRDUDE to avrdude-dev@nongnu.org.)

Copyright (©) 2003 Brian S. Dean

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

mailto:avrdude-dev@nongnu.org

Table of Contents

1 Introduction..................., 1
1.1 History and Credits i 1

2 Command Line Options 2
2.1 Option Descriptions 2

2.2 Example Command Line Invocations 6

3 Terminal Mode Operation.................. 9
3.1 Terminal Mode Commands............................... 9

3.2 Terminal Mode Examples............................... 10

4 Configuration File 13
4.1 AVRDUDE Defaults............ 13

4.2 Programmer Definitions 13

4.3 Part Definitions............ i 14

4.3.1 Instruction Format 14

4.4 Other Notes ... 15

Appendix A Platform Dependent Information

.. 16
AL UnixX. .o 16
A.1.1 UnixInstallation............. 16
A.1.1.1 FreeBSD Installation.................. 16
A.1.1.2 Linux Installation 16
A.1.2 Unix Configuration Files....................... 17
A.1.2.1 FreeBSD Configuration Files 17
A.1.2.2 Linux Configuration Files 17
A1.3 UnixPort Names 17
A.1.4 Unix Documentation 17
A2 WIndows. ... 17
A21 Imstallation...............ooiiini. .. 17
A.2.2 Configuration Files............................ 18
A.2.2.1 Configuration file names 18

A.2.2.2 How AVRDUDE finds the configuration
files. ..o 18
A23 Port Names.ouviii. .. 18
A231 Serial Ports.......................... 18
A.2.3.2 Parallel Ports........................ 18
A.2.4 Using the parallel port 19
A.2.4.1 Windows NT/2K/XP................. 19
A.2.42 Windows 95/98 19
A.2.5 Documentation 19

A2.6 Credits.o 19

Chapter 1: Introduction 1

1 Introduction

AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading
the on-chip memories of Atmel’s AVR microcontrollers. It can program the Flash and
EEPROM, and where supported by the serial programming protocol, it can program fuse
and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any
programming instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.

AVRDUDE can be used effectively via the command line to read or write all chip memory
types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal)
mode. Using AVRDUDE from the command line works well for programming the entire
memory of the chip from the contents of a file, while interactive mode is useful for exploring
memory contents, modifing individual bytes of eeprom, programming fuse/lock bits, etc.

AVRDUDE supports three basic programmer types: Atmel’s STK500, appnote avr910
and the PPI (parallel port interface). PPI represents a class of simple programmers where
the programming lines are directly connected to the PC parallel port. Several pin config-
urations exist for several variations of the PPI programmers, and AVRDUDE can be be
configured to work with them by either specifying the appropriate programmer on the com-
mand line or by creating a new entry in its configuration file. All that’s usually required
for a new entry is to tell AVRDUDE which pins to use for each programming function.

The STK500 and avr910 use the serial port to communicate with the PC and contains on-
board logic to control the programming of the target device. The fundamental difference
between the two types lies in the protocol used to control the programmer. The av910
protocol is very simplistic and can easily be used as the basis for a simple, home made
programer since the firmware is available online. On the other hand, the STK500 protocol
is more robust and complicated and the firmware is not openly available.

1.1 History and Credits

AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the
FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when
interest grew in a Windows port of the software so that the name did not conflict with
AVRPROG.EXE which is the name of Atmel’s Windows programming software.

The AVRDUDE source now resides in the public CVS repository on savannah.gnu.org
(http://savannah.gnu.org/projects/avrdude/), where it continues to be enhanced and
ported to other systems. In addition to FreeBSD, AVRDUDE now runs on Linux and Win-
dows. The developers behind the porting effort primarily were Ted Roth, Eric Weddington,
and Joerg Wunsch.

And in the spirit of many open source projects, this manual also draws on the work
of others. The initial revision was composed of parts of the original Unix manual page
written by Joerg Wunsch, the original web site documentation by Brian Dean, and from
the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The
texi formatting was modeled after that of the Simulavr documentation by Ted Roth.

Chapter 2: Command Line Options 2

2 Command Line Options

2.1 Option Descriptions

AVRDUDE is a command line tool, used as follows:
avrdude -p partno options ...

Command line options are used to control AVRDUDE’s behaviour. The following options
are recognized:

-p partno This is the only mandatory option and it tells AVRDUDE what type of part
(MCU) that is connected to the programmer. The partno parameter is the
part’s id listed in the configuration file. Specify -p 7 to list all parts in the
configuration file. If a part is unknown to AVRDUDE, it means that there
is no config file entry for that part, but it can be added to the configuration
file if you have the Atmel datasheet so that you can enter the programming
specifications. Currently, the following MCU types are understood:

1200 AT9051200
2313 AT90S2313
2333 AT9052333
2343 AT90S2343 (*)
4414 AT9054414
4433 AT9054433
4434 AT90S4434
8515 AT90S8515
8535 AT9058535
n103 ATMEGA103
m128 ATMEGA128
m16 ATMEGA16
n163 ATMEGA163
n169 ATMEGA169
m32 ATMEGA32
m8 ATMEGAS
m8535 ATMEGAS535
£12 ATtiny12

15 ATtiny15

26 ATTINY?26

(*) The AT90S2323 uses the same algorithm.

-c programmer-id
Specify the programmer to be used. AVRDUDE knows about several common
programmers. Use this option to specify which one to use. The programmer-id
parameter is the programmer’s id listed in the configuration file. Specify -¢ 7 to
list all programmers in the configuration file. If you have a programmer that is
unknown to AVRDUDE, and the programmer is controlled via the PC parallel
port, there’s a good chance that it can be easily added to the configuration
file without any code changes to AVRDUDE. Simply copy an existing entry

Chapter 2: Command Line Options 3

and change the pin definitions to match that of the unknown programmer.
Currently, the following programmer ids are understood and supported:

alf
avr910
avrisp
bascom
bsd
dt006
pavr
picoweb
pony
spl2
stk200
stk500

-C config-file

Nightshade ALF-PgmAVR, http://nightshade.homeip.net/
Atmel Low Cost Serial Programmer

Atmel AVR ISP

Bascom SAMPLE programming cable

Brian Dean’s Programmer, http://www.bsdhome.com/avrdude/
Dontronics DT006

Jason Kyle’s pAVR Serial Programmer

Picoweb Programming Cable, http://www.picoweb.net/
stk200 = Pony Prog STK200

Steve Bolt’s Programmer

STK200

Atmel STK500

Use the specified config file for configuration data. This file contains all pro-
grammer and part definitions that AVRDUDE knows about. If you have a
programmer or part that AVRDUDE does not know about, you can add it to
the config file (be sure and submit a patch back to the author so that it can
be incorporated for the next version). If not specified, AVRDUDE reads the
configuration file from /usr/local/etc/avrdude.conf (FreeBSD and Linux). See
Appendix A for the method of searching for the configuration file for Windows.

-e Causes a chip erase to be executed. This will reset the contents of the flash
ROM and EEPROM to the value ‘0Oxff’, and is basically a prerequisite command
before the flash ROM can be reprogrammed again. The only exception would
be if the new contents would exclusively cause bits to be programmed from the
value ‘1’ to ‘0’. Note that in order to reprogram EERPOM cells, no explicit
prior chip erase is required since the MCU provides an auto-erase cycle in that
case before programming the cell.

-E exitspec[, . ..]

By default, AVRDUDE leaves the parallel port in the same state at exit as it
has been found at startup. This option modifies the state of the ‘/RESET’
and ‘Vec’ lines the parallel port is left at, according to the exitspec arguments
provided, as follows:

reset

The ‘/RESET’ signal will be left activated at program exit, that
is it will be held low, in order to keep the MCU in reset state
afterwards. Note in particular that the programming algorithm for
the AT90S1200 device mandates that the ‘/RESET’ signal is active
before powering up the MCU, so in case an external power supply
is used for this MCU type, a previous invocation of AVRDUDE

Chapter 2: Command Line Options 4

-f format

-i filename

with this option specified is one of the possible ways to guarantee
this condition.

noreset The ‘/RESET’ line will be deactivated at program exit, thus al-
lowing the MCU target program to run while the programming
hardware remains connected.

vee This option will leave those parallel port pins active (i. e. high)
that can be used to supply ‘Vee’ power to the MCU.
novcc This option will pull the ‘Vec’ pins of the parallel port down at

program exit,.
Multiple exitspec arguments can be separated with commas.

This option specifies the file format for the input or output files to be processed.
Format can be one of:

Intel Hex
Motorola S-record
raw binary; little-endian byte order, in the case of the flash ROM
data

m immediate mode; actual byte values specified on the command line,
seperated by commas or spaces in place of the filename field of the
‘-i’, ‘=0’, or ‘=U’ options. This is useful for programming fuse bytes
without having to create a single-byte file or enter terminal mode.
If the number specified begins with 0x, it is treated as a hex value.
If the number otherwise begins with a leading zero (0) it is treated
as octal. Otherwise, the value is treated as decimal.

a auto detect; valid for input only, and only if the input is not pro-
vided at stdin.

The default is to use auto detection for input files, and raw binary format for
output files.

Normally, AVRDUDE tries to verify that the device signature read from the
part is reasonable before continuing. Since it can happen from time to time that
a device has a broken (erased or overwritten) device signature but is otherwise
operating normally, this options is provided to override the check.

Specifies the input file to be programmed into the MCU. Can be specified as ‘-’
to use stdin as the input.

-m memtype

-n

Specifies which program area of the MCU to read or write; allowable values
depend on the MCU being programmed, but most support at least eeprom
for the EEPROM, and flash for the flash ROM. Use the ‘-v’ option on the
command line or the part command from terminal mode to display all the
memory types supported by a particular device. The default is flash.

No-write - disables actually writing data to the MCU (useful for debugging
AVRDUDE).

Chapter 2: Command Line Options 5

-o filename

-P port

Specifies the name of the output file to write, and causes the respective memory
area to be read from the MCU. Can be specified as ‘-’ to write to stdout.

Use port to identify the device to which the programmer is attached. By default
the /dev/ppi0 port is used, but if the programmer type normally connects to
the serial port, the /dev/cuaa0 port is the default. If you need to use a different
parallel or serial port, use this option to specify the alternate port name.

Disable (or quell) output of the progress bar while reading or writing to the
device.

Tells AVRDUDE to enter the interactive “terminal” mode instead of up- or
downloading files. See below for a detailed description of the terminal mode.

-U memtype:op: filename [: format]

=Y cycles

Perform a memory operation, equivalent to specifing the ‘-m’, ‘=i’ or ‘-0’, and
‘~f’ options, except that multiple ‘-U’ optins can be specified in order to operate
on mulitple memories on the same command-line invocation. The memtype field
specifies the memory type to operate on. The op field specifies what operation
to perform:

r read the specified device memory and write to the specified file
W read the specified file and write it to the specified device memory
v read the specified device memory and the specified file and perform

a verify operation

The filename field indicates the name of the file to read or write. The format
field is optional and contains the format of the file to read or write. See the
‘~f’ option for possible values.

Enable verbose output.
Disable automatic verify check when uploading data.

Tells AVRDUDE to use the last four bytes of the connected parts’ EEPROM
memory to track the number of times the device has been erased. When this
option is used and the ‘-e’ flag is specified to generate a chip erase, the previous
counter will be saved before the chip erase, it is then incremented, and written
back after the erase cycle completes. Presumably, the device would only be
erased just before being programmed, and thus, this can be utilized to give an
indication of how many erase-rewrite cycles the part has undergone. Since the
FLASH memory can only endure a finite number of erase-rewrite cycles, one
can use this option to track when a part is nearing the limit. The typical limit
for Atmel AVR FLASH is 1000 cycles. Of course, if the application needs the
last four bytes of EEPROM memory, this option should not be used.

Instructs AVRDUDE to initialize the erase-rewrite cycle counter residing at the
last four bytes of EEPROM memory to the specified value. If the application
needs the last four bytes of EEPROM memory, this option should not be used.

Chapter 2: Command Line Options 6

2.2 Example Command Line Invocations

Download the file diag.hex to the ATmegal28 chip using the STK500 programmer con-
nected to the default serial port:

-

avrdude:

avrdude:
avrdude:
avrdude:
avrdude:
avrdude:
avrdude:
avrdude:

avrdude:
avrdude:
avrdude:
avrdude:
avrdude:
avrdude:

% avrdude -p ml128 -c stk500 -e -U flash:w:diag.hex

AVR device initialized and ready to accept instructions

Reading | #t#H###s#H AR S | 1007 0.0

Device signature = 0x1e9702

erasing chip

done.

performing op: 1, flash, 0, diag.hex

reading input file "diag.hex"

input file diag.hex auto detected as Intel Hex
writing flash (19278 bytes):

Writing | ###HH#HEHHEHHE RS | 1007, 7.6

19456 bytes of flash written

verifying flash memory against diag.hex:

load data flash data from input file diag.hex:
input file diag.hex auto detected as Intel Hex
input file diag.hex contains 19278 bytes
reading on-chip flash data:

Reading | #it#H###H i HHEHE R | 1007, 6.8

avrdude: verifying ...

avrdude: 19278 bytes of flash verified
avrdude done. Thank you.

b

(N

3sli

Upload the flash memory from the ATmegal28 connected to the STK500 programmer and
save it in raw binary format in the file named diag.flash:

Chapter 2: Command Line Options 7

(" N
% avrdude -p m128 -c stk500 -U flash:r:diag.flash:r

avrdude: AVR device initialized and ready to accept instructions
Reading | ##ft#Htt AR R | 1007, 0. 03s]]

avrdude: Device signature = 0x1e9702
avrdude: reading flash memory:

Reading | ##t# R | 1007, 46.(10s]]
avrdude: writing output file "diag.flash"
avrdude done. Thank you.

h
N J

Using the default programmer, download the file diag.hex to flash, eeprom.hex to EEP-
ROM, and set the Extended, High, and Low fuse bytes to 0xff, 0x89, and 0x2e respectively:

Chapter 2: Command Line Options 8

(7

% avrdude -p m128 -U flash:w:diag.hex \

> -U eeprom:w:eeprom.hex \
> -U efuse:w:0xff:m \
> -U hfuse:w:0x89:m \
> -U lfuse:w:0x2e:m

avrdude: AVR device initialized and ready to accept instructions
Reading | ##t##t#t# A A | 1007 0. 03s]

avrdude: Device signature = 0x1e9702

avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed]]
To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ##s S | 1007, 7. 60s]]

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:
avrdude: load data flash data from input file diag.hex:
avrdude: input file diag.hex auto detected as Intel Hex
avrdude: input file diag.hex contains 19278 bytes
avrdude: reading on-chip flash data:

Reading | ####i BB S | 1007, 6.84s]]

avrdude: verifying ...
avrdude: 19278 bytes of flash verified

[... other memory status output skipped for brevity ...]

avrdude done. Thank you.

b
x J

Chapter 3: Terminal Mode Operation 9

3 Terminal Mode Operation

AVRDUDE has an interactive mode called terminal mode that is enabled by the ‘-t’
option. This mode allows one to enter interactive commands to display and modify the
various device memories, perform a chip erase, display the device signature bytes and part
parameters, and to send raw programming commands. Commands and parameters may be
abbreviated to their shortest unambiguous form. Terminal mode also supports a command
history so that previously entered commands can be recalled and edited.

3.1 Terminal Mode Commands

The following commands are implemented:

dump memtype addr nbytes
Read nbytes from the specified memory area, and display them in the usual
hexadecimal and ASCII form.

dump Continue dumping the memory contents for another nbytes where the previous
dump command left off.

write memtype addr bytel ... byteN
Manually program the respective memory cells, starting at address addr, using
the values bytel through byteN. This feature is not implemented for bank-
addressed memories such as the flash memory of ATMega devices.

erase Perform a chip erase.

send bl b2 b3 b4
Send raw instruction codes to the AVR device. If you need access to a feature
of an AVR part that is not directly supported by AVRDUDE, this command
allows you to use it, even though AVRDUDE does not implement the command.

sig Display the device signature bytes.

part Display the current part settings.

?

help Give a short on-line summary of the available commands.
quit Leave terminal mode and thus AVRDUDE.

In addition, the following commands are supported on the STK500 programmer:

vtarg voltage
Set the target’s supply voltage to voltage Volts.

varef voltage
Set the adjustable voltage source to voltage Volts. This voltage is normally
used to drive the target’s Aref input on the STK500.

fosc freq[M | k]
Set the master oscillator to freq Hz. An optional trailing letter M multiplies
by 1E6, a trailing letter k by 1E3.

fosc off Turn the master oscillator off.

parms Display the current voltage and master oscillator parameters.

Chapter 3: Terminal Mode Operation

3.2 Terminal Mode Examples

Display part parameters, modify eeprom cells, perform a chip erase:

10

Chapter 3: Terminal Mode Operation 11

(7

% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude> part

>>> part

AVR Part : ATMEGA128
Chip Erase delay : 9000 us
PAGEL : PD7

BS2 : PAO

RESET disposition : dedicated
RETRY pulse : SCK
serial program mode : yes

parallel program mode : yes
Memory Detail :

Page Polled
Memory Type Paged Size Size #Pages MinW MaxW ReadBack

eeprom no 4096 8 0 9000 9000 Oxff Oxff
flash yes 131072 256 512 4500 9000 Oxff 0x00
1fuse no 1 0 0 0 0 0x00 0x00
hfuse no 1 0 0 0 0 0x00 0x00
efuse no 1 0 0 0 0 0x00 0x00
lock no 1 0 0 0 0 0x00 0x00
calibration no 1 0 0 0 0 0x00 0x00
signature no 3 0 0 0 0 0x00 0x00

avrdude> dump eeprom 0 16
>>> dump eeprom O 16

0000 ff ff ff ff ff ff ff ff ff ff ff £f £f £ff £f £f |.............. ..

avrdude> write eeprom 0 1 2 3 4
>>> write eeprom 0 1 2 3 4

avrdude> dump eeprom O 16
>>> dump eeprom O 16

0000 01 02 03 04 ff ff ff ff ff ff ff ff £f £f £f £f |.............. ..

avrdude> erase

>>> erase

avrdude: erasing chip
avrdude> dump eeprom 0 16
>>> dump eeprom O 16

0000 ff ff ff ff ff ff ff ff £f ff ff ff £f £f £f £f |.............. ..

avrdude>

=)

Chapter 3: Terminal Mode Operation 12

Program the fuse bits of an ATmegal28 (disable M103 compatibility, enable high speed
external crystal, enable brown-out detection, slowly rising power). First display the factory
defaults, then reprogram:

a N
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude> d efuse

>>> d efuse

0000 £d .] |

avrdude> d hfuse
>>> d hfuse
0000 99 .] |

avrdude> d lfuse
>>> d 1lfuse
0000 el . 1 |

avrdude> w efuse 0 Oxff
>>> w efuse 0 Oxff

avrdude> w hfuse 0 0x89
>>> w hfuse 0 0x89

avrdude> w lfuse O 0x2f
>>> w 1lfuse 0 0x2f

avrdude>
N J

Chapter 4: Configuration File 13

4 Configuration File

AVRDUDE reads a configuration file upon startup which describes all of the parts and
programmers that it knows about. The advantage of this is that if you have a chip that
is not, currently supported by AVRDUDE, you can add it to the configuration file without
waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer
that is not supported by AVRDUDE, chances are good that you can copy and existing
programmer definition, and with only a few changes, make your programmer work with
AVRDUDE.

AVRDUDE first looks for a system wide configuration file in a platform dependent
location. On Unix, this is usually /usr/local/etc/avrdude.conf, while on Windows it
is usally in the same location as the executable file. The name of this file can be changed
using the ‘-C’ command line option. After the system wide configuration file is parsed,
AVRDUDE looks for a per-user configuration file to augment or override the system wide
defaults. On Unix, the per-user file is .avrduderc within the user’s home directory. On
Windows, this file is the avrdude.rc file located in the same directory as the executable.

4.1 AVRDUDE Defaults
default_parallel = "default-parallel-device" ;
Assign the default parallel port device. Can be overidden using the ‘~=P’ option.

default_serial = "default-serial-device" ;
Assign the default serial port device. Can be overidden using the ‘~P’ option.

default_programmer = "default-programmer-id" ;
Assign the default programmer id. Can be overidden using the ‘~c¢’ option.

4.2 Programmer Definitions

The format of the programmer definition is as follows:

programmer
id = <id1> [, <id2> [, <id3>] ...] ; # <idN> are quoted strings
desc = <description> ; # quoted string
type = par | stkb500 ; # programmer type
vce = <numi> [, <num2> ...] ; # pin number(s)
reset = <num> ; # pin number
sck = <num> ; # pin number
mosi = <num> ; # pin number
miso = <num> ; # pin number
errled = <num> ; # pin number
rdyled = <num> ; # pin number
pgmled = <num> ; # pin number
viyled = <num> ; # pin number

Chapter 4: Configuration File 14

4.3 Part Definitions

part
id = <id> ; # quoted string
desc = <description> ; # quoted string
devicecode = <num> ; # numeric
chip_erase_delay = <num> ; # micro-seconds
pagel = <num> ; # pin name in hex, i.e., O0xD7]
bs2 = <num> ; # pin name in hex, i.e., OxAOJ
reset = dedicated | io;
retry_pulse = reset | sck;
pgm_enable = <instruction format> ;
chip_erase = <instruction format> ;
memory <memtype>
paged = <yes/no> ; # yes / no
size = <num> ; # bytes
page_size = <num> ; # bytes
num_pages = <num> ; # numeric
min_write_delay = <num> ; # micro-seconds
max_write_delay = <num> ; # micro-seconds
readback_p1l = <num> ; # byte value
readback_p2 = <num> ; # byte value
pwroff_after_write = <yes/no> ; # yes / no
read = <instruction format> ;
write = <instruction format> ;
read_1lo = <instruction format> ;
read_hi = <instruction format> ;
write_1lo = <instruction format> ;
write_hi = <instruction format> ;
loadpage_lo = <instruction format> ;
loadpage_hi = <instruction format> ;
writepage = <instruction format> ;

4.3.1 Instruction Format

Instruction formats are specified as a comma seperated list of string values containing
information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may
be one of the following formats:

1 The bit is always set on input as well as output

0 the bit is always clear on input as well as output

X the bit is ignored on input and output

a the bit is an address bit, the bit-number matches this bit specifier’s position
within the current instruction byte

aN the bit is the Nth address bit, bit-number = N, i.e., a12 is address bit 12 on

input, a0 is address bit 0.

Chapter 4: Configuration File 15

i the bit is an input data bit
o) the bit is an output data bit

Each instruction must be composed of 32 bit specifiers. The instruction specification
closely follows the instruction data provided in Atmel’s data sheets for their parts. For
example, the EEPROM read and write instruction for an AT90S2313 AVR part could be
encoded as:

read ="1 0 1 O 0O 0 0 O X XXX XXxx",
"x a6 ab a4 a3 a2 al a0 0000 O0O0OO0O";
write = "1 1 0 O 0O 0 0 O

]
]
]

M
]
>4—

"x a6 ab a4 a3 a2 al a0 iiii i4didiidi";

4.4 Other Notes

e The devicecode parameter is the device code used by the STK500 and are obtained
from the software section (avr061.zip of Atmel’s AVR061 application note available
from http://www.atmel.com/atmel/acrobat/doc2525.pdf.

e Not all memory types will implement all instructions.
e AVR Fuse bits and Lock bits are implemented as a type of memory.

e Example memory types are: flash, eeprom, fuse, 1fuse (low fuse), hfuse (high fuse),
efuse (extended fuse), signature, calibration, lock.

e The memory type specified on the AVRDUDE command line must match one of the
memory types defined for the specified chip.

e The puroff_after_write flag causes AVRDUDE to attempt to power the device off
and back on after an unsuccessful write to the affected memory area if VCC programmer
pins are defined. If VCC pins are not defined for the programmer, a message indicating
that the device needs a power-cycle is printed out. This flag was added to work around
a problem with the at90s4433/2333’s; see the at90s4433 errata at:

http://www.atmel.com/atmel/acrobat/doc1280.pdf

Appendix A: Platform Dependent Information 16

Appendix A Platform Dependent Information

A.1 Unix

A.1.1 Unix Installation

To build and install from the source tarball on Unix like systems:
$ gunzip -c avrdude-4.2.0.tar.gz | tar xf -
$ cd avrdude-4.2.0
$./configure
$ make
$ su root -c ’make install’

The default location of the install is into /usr/local so you will need to be sure that
/usr/local/bin is in your PATH environment variable.

If you do not have root access to your system, you can do the the following instead:

$ gunzip -c avrdude-4.2.0.tar.gz | tar xf -
$ cd avrdude-4.2.0

$./configure --prefix=$HOME/local

$ make

$ make install

A.1.1.1 FreeBSD Installation

AVRDUDE is installed via the FreeBSD Ports Tree as follows:

% su - root
cd /usr/ports/devel/avrdude
make install

If you wish to install from a pre-built package instead of the source, you can use the
following instead:
% su - root
pkg_add -r avrdude

Of course, you must be connected to the Internet for these methods to work, since that
is where the source as well as the pre-built package is obtained.

A.1.1.2 Linux Installation

On rpm based linux systems (such as RedHat, SUSE, Mandrake, etc), you can build and
install the rpm binaries directly from the tarball:

$ su - root
rpmbuild -tb avrdude-4.2.0.tar.gz
rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-4.2.0-1.1i386.rpm

Note that the path to the resulting rpm package, differs from system to system. The
above example is specific to RedHat.

Appendix A: Platform Dependent Information 17

A.1.2 Unix Configuration Files

When AVRDUDE is build using the default ‘--prefix’ configure option, the default con-
figuration file for a Unix system is located at /usr/local/etc/avrdude.conf. This can be
overridden by using the ‘-C’ command line option. Additionally, the user’s home directory
is searched for a file named .avrduderc, and if found, is used to augment the system default
configuration file.

A.1.2.1 FreeBSD Configuration Files

When AVRDUDE is installed using the FreeBSD ports system, the system configuration
file is always /usr/local/etc/avrdude. conf.

A.1.2.2 Linux Configuration Files

When AVRDUDE is installed using from an rpm package, the system configuration file will
be always be /etc/avrdude. conf.

A.1.3 Unix Port Names

The parallel and serial port device file names are system specific. The following table lists
the default names for a given system.

System Default Parallel Port Default Serial Port
FreeBSD /dev/ppi0 /dev/cuaal
Linux /dev/parport0 /dev/ttySO

On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel
port and the sio(4) driver for serial port access.

On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port
and the tty driver for serial port access.

A.1.4 Unix Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/manl area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’.

A.2 Windows

A.2.1 Installation

A Windows executable of avrdude is included in WinAVR which can be found at
http://sourceforge.net/projects/winavr. WinAVR is a suite of executable, open
source software development tools for the AVR for the Windows platform.

To build avrdude from the source You must have Cygwin (http://www.cygwin.com/).
To build and install from the source tarball for Windows (using Cygwin):

Appendix A: Platform Dependent Information 18

$ set PREFIX=<your install directory path>

$ export PREFIX

$ gunzip -c avrdude-4.2.0.tar.gz | tar xf -

$ cd avrdude-4.2.0

$./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX
--sysconfdir=$PREFIX/bin --enable-versioned-doc=no

$ make

$ make install

A.2.2 Configuration Files

A.2.2.1 Configuration file names

AVRDUDE on Windows looks for a system configuration file name of avrdude.conf and
looks for a user override configuration file of avrdude.rc.

A.2.2.2 How AVRDUDE finds the configuration files.

AVRDUDE on Windows has a different way of searching for the system and user configu-
ration files. Below is the search method for locating the configuration files:

1. The directory from which the application loaded.
2. The current directory.

3. The Windows system directory. On Windows NT, the name of this directory is
SYSTEM32.

4. Windows NT: The 16-bit Windows system directory. The name of this directory is
SYSTEM.

5. The Windows directory.
6. The directories that are listed in the PATH environment variable.

A.2.3 Port Names

A.2.3.1 Serial Ports

When you select a serial port (i.e. when using an STK500) use the Windows serial port
device names such as: coml, com2, etc.

A.2.3.2 Parallel Ports

AVRDUDE will only accept 3 Windows parallel port names: Iptl, Ipt2, or Ipt3. Each of
these names corresponds to a fixed parallel port base address:

lpt1 0x378
1pt2 0x278
1pt3 0x3BC

On your desktop PC, Iptl will be the most common choice. If you are using a laptop,
you might have to use Ipt3 instead of Iptl. Select the name of the port the corresponds to
the base address of the parallel port that you want.

Appendix A: Platform Dependent Information 19

A.2.4 Using the parallel port

A.2.4.1 Windows NT/2K/XP

On Windows NT, 2000, and XP user applications cannot directly access the parallel port.
However, kernel mode drivers can access the parallel port. giveio.sys is a driver that can
allow user applications to set the state of the parallel port pins.

Before using AVRDUDE, the giveio.sys driver must be loaded. The accompanying
command-line program, loaddrv.exe, can do just that.

To make things even easier there are 3 batch files that are also included:
1. install_giveio.bat Install and start the giveio driver.
2. status_giveio.bat Check on the status of the giveio driver.
3. remove_giveio.bat Stop and remove the giveio driver from memory.
These 3 batch files calls the loaddrv program with various options to install, start, stop,
and remove the driver.

When you first execute install_giveio.bat, loaddrv.exe and giveio.sys must be in the
current directory. When install_giveio.bat is executed it will copy giveio.sys from your
current directory to your Windows directory. It will then load the driver from the Windows
directory. This means that after the first time install_giveio is executed, you should be able
to subsequently execute the batch file from any directory and have it successfully start the
driver.

Note that you must have administrator privilege to load the giveio driver.

A.2.4.2 Windows 95/98

On Windows 95 and 98 the giveio.sys driver is not needed.

A.2.5 Documentation

AVRDUDE installs a manual page as well as info, HIML and PDF documentation. The
manual page is installed in /usr/local/man/manl area, while the HIML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘~-prefix’
and ‘--datadir’.

A.2.6 Credits.

Thanks to:
e Dale Roberts for the giveio driver.
e Paula Tomlinson for the loaddrv sources.

e Chris Liechti <cliechti@gmx.net> for modifying loaddrv to be command line driven and
for writing the batch files.

	Introduction
	History and Credits

	Command Line Options
	Option Descriptions
	Example Command Line Invocations

	Terminal Mode Operation
	Terminal Mode Commands
	Terminal Mode Examples

	Configuration File
	AVRDUDE Defaults
	Programmer Definitions
	Part Definitions
	Instruction Format

	Other Notes

	Platform Dependent Information
	Unix
	Unix Installation
	FreeBSD Installation
	Linux Installation

	Unix Configuration Files
	FreeBSD Configuration Files
	Linux Configuration Files

	Unix Port Names
	Unix Documentation

	Windows
	Installation
	Configuration Files
	Configuration file names
	How AVRDUDE finds the configuration files.

	Port Names
	Serial Ports
	Parallel Ports

	Using the parallel port
	Windows NT/2K/XP
	Windows 95/98

	Documentation
	Credits.

