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Dear reader of this benchmark

The following general comments should be noted on C Code benchmarking:

•Our goal with this presentation is to support our claim that we have a very High Level Language (in this case ‘C’) suitable architecture.

•The results may vary from application to application, but in average you will find AVR among the most code efficient architectures in the
market.

•There does not exist any standard to measure C Code efficiency, hence we have collected real applications from customers. There is,
however, an emerging standard for measuring C Code efficiency. The EEMBC (EDN Embedded Microprocessor Benchmark Consortium) are
currently developing a benchmark suite of real and synthetic applications written in C which we will look into when it becomes available.

•Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are summed, and the ratio between the code sizes is displayed.

•Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are used, and the ratio between every two applications is computed. The averaged ratio is displayed in the figure.

•Most of the compilers used are from IAR. The advantage of using the same compiler company for most of the processors is that the difference
in the code size does not depend on the global optimization which all compilers will benefit from, but to a larger degree of architectural
differences.

•Some of the compilers exist in later versions, so the results might be different for some of the microcontrollers.

The AVR C Compiler is, compared to many of our competitors, a relatively young compiler. The AVR C Compiler still gains signifi cant
code size decrease in every new release of the compiler.

By writing the code with the AVR architecture a smaller code size can be achieved. The code in the benchmark is NOT optimized f or
AVR, but the result is still very good !

Enjoy your reading



98/08/24

 ENHANCED RISC

C Code Benchmarks



98/08/24

 ENHANCED RISC

C Code Benchmarks

z Nine applications
z Based on customer code
z Various application areas
z Byte usage in individual applications
z Summarized results reported as

– Normalized Accumulated Results
– Averaged Normalized Results
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Pager protocol
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z Three layer protocol
z Includes simple driver
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Analog Telephone I
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z SIM Interface
z Parts of display driver
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Analog Telephone II
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z Automatically generated code
z State Machine based
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Reed-Solomon
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z Reed-Solomon Encoder/Decoder
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Car Radio Control

0
200
400
600
800

1000
1200

Z80 AVR 80C51 H8/500 68HC11 Thumb H8/300H ARM7 H8/300

#B
yt

es

z Skeleton application
z Control Flow and Bitfields
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C Bitfields
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z Benchmark code from customer
z 8 and 16 bit bitfield variables
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Analog Telephone III
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z Representative collection of routines from an analog
telephone application
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DES Algorithm
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z Encryption/Decryption algorithm
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Navigation Application
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z Complete application
z Communication, measurements, computations
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Accumulated over all Benchmarks
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z Indexes based on accumulated sizes
z Large applications counts more than small
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Normalized over all Benchmarks
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z Averaged indexes from all applications
z All applications counts evenly
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Summary

z Nine C Code Benchmarks from various
application areas

z No single microcontroller best for all
applications

z AVR in the top range for all the applications
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Compilers Used

z AVR: IAR ICCA90 version 1.40
z 80C51: IAR ICC8051 version 5.20
z Thumb: ARM tcc version 1.02b
z ARM: ARM armcc version 4.66b
z 80196: IAR icc196 version 5.20a
z Z80: IAR iccz80 version 4.03a
z H8/300(H): IAR icch83 version 3.22
z H8/500: IAR icch8500 version 2.92g
z 68HC11: IAR icc6811 version 4.20B


