‘ mEl. AVR' ENHANCED RISC

Dear reader of this benchmark

The following general comments should be noted on C Code benchmarking:
»Our goal with this presentation is to support our claim that we have a very High Level Language (in this case ‘C’) suitable architecture.

*The results may vary from application to application, but in average you will find AVR among the most code efficient architectures in the
market.

*There does not exist any standard to measure C Code efficiency, hence we have collected real applications from customers. There is,
however, an emerging standard for measuring C Code efficiency. The EEMBC (EDN Embedded Microprocessor Benchmark Consortium) are
currently developing a benchmark suite of real and synthetic applications written in C which we will look into when it becomes available.

+Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are summed, and the ratio between the code sizes is displayed.

+Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are used, and the ratio between every two applications is computed. The averaged ratio is displayed in the figure.

*Most of the compilers used are from IAR. The advantage of using the same compiler company for most of the processors is that the difference
in the code size does not depend on the global optimization which all compilers will benefit from, but to a larger degree of architectural
differences.

*Some of the compilers exist in later versions, so the results might be different for some of the microcontrollers.

The AVR C Compiler is, compared to many of our competitors, a relatively young compiler. The AVR C Compiler still gains signifi cant
code size decrease in every new release of the compiler.

By writing the code with the AVR architecture a smaller code size can be achieved. The code in the benchmark is NOT optimized f or

AVR, but the result is still very good !

Enjoy your reading

98/08/24



AVR' ENHANCED RISC

AVR

C Code Benchmarks

98/08/24



AVR' ENHANCED RISC

C Code Benchmarks

Nine applications

Based on customer code

Various application areas

Byte usage in individual applications

Summarized results reported as
— Normalized Accumulated Results
— Averaged Normalized Results

98/08/24



AVR' ENHANCED RISC

Pager protocol

® Three layer protocol
® [ncludes simple driver

8000

6000

4000

68HC11 AVR Thumb H8/500 80196 H8/300H Arm7 80C51 H8/3OO

#Bytes

98/08/24



AVR' ENHANCED RISC

Analog Telephone |

® SIM Interface
® Parts of display driver

? 4000

> 3000
a8

* 2000

1000

0

VR Thumb 68HC11 H8/500 80196 80C51 H8/300H ARM7 H8/3OO

98/08/24



AVR' ENHANCED RISC

Analog Telephone I

® Automatically generated code
® State Machine based

30000
25000

20000
15000
10000

5000 I
0

Thumb 68HC11 H8/500 ARM7 H8/300H H8/300 80C51

#Bytes

98/08/24



AVR' ENHANCED RISC

Reed-Solomon

® Reed-Solomon Encoder/Decoder

8000

6000

4000
0

Thumb H8/500 ARM7 VR 68HC11 H8/3OOH 80C51 H8/300

#Bytes

98/08/24



AVR' ENHANCED RISC

Car Radio Control

® Skeleton application
® Control Flow and Bitfields

1200
1000

800
600
400
200

0

VR 80C51 H8/500 68HC11 Thumb H8/300H ARM7 H8/3OO

#Bytes

98/08/24



AVR' ENHANCED RISC

C Bitfields

® Benchmark code from customer
® 8 and 16 bit bitfield variables

0
Q
3
@ 1000
500
0

Thumb Z80 68HC11 80C51 H8/500 ARM7 H8/3OOH H8/300

98/08/24



AVR' ENHANCED RISC

Analog Telephone Il

® Representative collection of routines from an analog
telephone application

1200
1000
800

600

400

EEE
0

H8/500 68HC11 H8/300H 80C51 H8/300

#Bytes

98/08/24



AVR' ENHANCED RISC

DES Algorithm

® Encryption/Decryption algorithm

? 2000

> 1500
m

#1000

500

0

Thumb H8/500 AVR 68HC11 ARM7 H8/3OOH 80C51 H8/300

98/08/24



AVR' ENHANCED RISC

Navigation Application

® Complete application
® Communication, measurements, computations

15000

10000
- I I I I I I

H8/500 Thumb 68HC11 80C51 ARM7

#Bytes

98/08/24



‘ mEl. AVR' ENHANCED RISC

Accumulated over all Benchmarks

® [ndexes based on accumulated sizes
® Large applications counts more than small

25
2

K

N 1,5

®

€ 1

(@]

< 05
0

VR Thumb H8/500 68HC11 80196 ARM7 H8/3OOH 80C51 H8/300

98/08/24



‘ mEl. AVR' ENHANCED RISC

Normalized over all Benchmarks

® Averaged indexes from all applications
® All applications counts evenly

1,5

0

VR Thumb H8/500 68HC11 80196 ARM7 H8/300H 80C51 H8/300

Normalized
H

98/08/24



AVR' ENHANCED RISC

Summary

® Nine C Code Benchmarks from various
application areas

® No single microcontroller best for all
applications

® AVR in the top range for all the applications

98/08/24



AVR' ENHANCED RISC

Compilers Used

AVR: IAR ICCA90 version 1.40
80C51: IAR ICC8051 version 5.20
Thumb: ARM tcc version 1.02b
ARM: ARM armcc version 4.66b
80196: IAR icc196 version 5.20a
Z80: IAR iccz80 version 4.03a
H8/300(H): IAR icch83 version 3.22
H8/500: IAR icch8500 version 2.92¢g
68HC11: IAR icc6811 version 4.20B

98/08/24



