
98/08/24

 ENHANCED RISC

Dear reader of this benchmark

The following general comments should be noted on C Code benchmarking:

•Our goal with this presentation is to support our claim that we have a very High Level Language (in this case ‘C’) suitable architecture.

•The results may vary from application to application, but in average you will find AVR among the most code efficient architectures in the
market.

•There does not exist any standard to measure C Code efficiency, hence we have collected real applications from customers. There is,
however, an emerging standard for measuring C Code efficiency. The EEMBC (EDN Embedded Microprocessor Benchmark Consortium) are
currently developing a benchmark suite of real and synthetic applications written in C which we will look into when it becomes available.

•Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are summed, and the ratio between the code sizes is displayed.

•Since not all code could be compiled for all compilers, all the indexes are relative to AVR. Only the applications that could be compiled for both
two applications are used, and the ratio between every two applications is computed. The averaged ratio is displayed in the figure.

•Most of the compilers used are from IAR. The advantage of using the same compiler company for most of the processors is that the difference
in the code size does not depend on the global optimization which all compilers will benefit from, but to a larger degree of architectural
differences.

•Some of the compilers exist in later versions, so the results might be different for some of the microcontrollers.

The AVR C Compiler is, compared to many of our competitors, a relatively young compiler. The AVR C Compiler still gains signifi cant
code size decrease in every new release of the compiler.

By writing the code with the AVR architecture a smaller code size can be achieved. The code in the benchmark is NOT optimized f or
AVR, but the result is still very good !

Enjoy your reading



98/08/24

 ENHANCED RISC

C Code Benchmarks



98/08/24

 ENHANCED RISC

C Code Benchmarks

z Nine applications
z Based on customer code
z Various application areas
z Byte usage in individual applications
z Summarized results reported as

– Normalized Accumulated Results
– Averaged Normalized Results



98/08/24

 ENHANCED RISC

Pager protocol

0

2000

4000

6000

8000

68HC11 AVR Thumb H8/500 Z80 80196 H8/300H Arm7 80C51 H8/300

#B
yt

es

z Three layer protocol
z Includes simple driver



98/08/24

 ENHANCED RISC

Analog Telephone I

0
1000
2000
3000
4000
5000
6000

AVR Thumb 68HC11 Z80 H8/500 80196 80C51 H8/300H ARM7 H8/300

#B
yt

es

z SIM Interface
z Parts of display driver



98/08/24

 ENHANCED RISC

Analog Telephone II

0
5000

10000
15000
20000
25000
30000

AVR Thumb 68HC11 H8/500 ARM7 H8/300H H8/300 80C51

#B
yt

es

z Automatically generated code
z State Machine based



98/08/24

 ENHANCED RISC

Reed-Solomon

0

2000

4000

6000

8000

Thumb H8/500 ARM7 AVR 68HC11 H8/300H Z80 80C51 H8/300

#B
yt

es

z Reed-Solomon Encoder/Decoder



98/08/24

 ENHANCED RISC

Car Radio Control

0
200
400
600
800

1000
1200

Z80 AVR 80C51 H8/500 68HC11 Thumb H8/300H ARM7 H8/300

#B
yt

es

z Skeleton application
z Control Flow and Bitfields



98/08/24

 ENHANCED RISC

C Bitfields

0

500

1000

1500

2000

2500

AVR Thumb Z80 68HC11 80C51 H8/500 ARM7 H8/300H H8/300

#B
yt

es

z Benchmark code from customer
z 8 and 16 bit bitfield variables



98/08/24

 ENHANCED RISC

Analog Telephone III

0
200
400
600
800

1000
1200

H8/500 68HC11 AVR Z80 H8/300H 80C51 H8/300

#B
yt

es

z Representative collection of routines from an analog
telephone application



98/08/24

 ENHANCED RISC

DES Algorithm

0
500

1000
1500
2000
2500
3000

Thumb H8/500 AVR 68HC11 Z80 ARM7 H8/300H 80C51 H8/300

#B
yt

es

z Encryption/Decryption algorithm



98/08/24

 ENHANCED RISC

Navigation Application

0

5000

10000

15000

H8/500 Thumb 68HC11 AVR Z80 80C51 ARM7

#B
yt

es

z Complete application
z Communication, measurements, computations



98/08/24

 ENHANCED RISC

Accumulated over all Benchmarks

0

0,5

1

1,5

2

2,5

AVR Thumb H8/500 68HC11 Z80 80196 ARM7 H8/300H 80C51 H8/300

N
or

m
al

iz
ed

z Indexes based on accumulated sizes
z Large applications counts more than small



98/08/24

 ENHANCED RISC

Normalized over all Benchmarks

0

0,5

1

1,5

2

AVR Thumb H8/500 68HC11 Z80 80196 ARM7 H8/300H 80C51 H8/300

N
or

m
al

iz
ed

z Averaged indexes from all applications
z All applications counts evenly



98/08/24

 ENHANCED RISC

Summary

z Nine C Code Benchmarks from various
application areas

z No single microcontroller best for all
applications

z AVR in the top range for all the applications



98/08/24

 ENHANCED RISC

Compilers Used

z AVR: IAR ICCA90 version 1.40
z 80C51: IAR ICC8051 version 5.20
z Thumb: ARM tcc version 1.02b
z ARM: ARM armcc version 4.66b
z 80196: IAR icc196 version 5.20a
z Z80: IAR iccz80 version 4.03a
z H8/300(H): IAR icch83 version 3.22
z H8/500: IAR icch8500 version 2.92g
z 68HC11: IAR icc6811 version 4.20B


