Author:
Johie E fecky, Director of Machine Vision
Software; Imeaging Technology Inc.

He recefved the B.S. degreetin mechanical
aird derospace engineering from Princeton

Chiversity in 1954 and the MLS. and Ph.D. degrees i
clectrical aiid cdmputer engineering frone the

Uhtiversity of Vermont in 1957 and 1999.

He started Lecky Engineering and Development Co. in 1985.
In 1991, he founded hilelec Corporation which designed dane
developed complele robotic vision Systens. Intelec was
acquired by Imaging Technology Incorporated in 1995,
where be 1was Director of Machine Vision

Software Praducts wntil late “98:

Heds now President of Lecly Engineering, LLC. and a

berof the Techpical Sla

IN this technical feature, we
. explore in detail the process of
& optimizing a simple machine
 vision application for MMX.

This exercise reveals many
iINnteresting properties, features,
and computation idiosyncrasies
common to machine vision

eyt

How to optimize a machine vision
application for MIMIX

MMX technology for accelerating
multimedia applications has become quite
commonplace in recent months. Processors
from Intel, Cyrix, and AMD are now
available with the speciul hardware
atlditions necessary to implement MMX,
Many of the core requirements of
multimedia processing overlap with
industrial machine vision requirements, and
so it's natural that the vision community
benefit from this new computational
capacity.

This article will explore, in detail, the
process of oprimizing a simple machine
vision application for NINNX. This exercise
reveals many interesting properties. features,
.ll'lL' L[)l'npll[;][il)l-l il“l]\.\'nlfii.\il.'."(common to

IMAGE

PROCESSING MARCH ISSUE

machine vision algorithm optimization in
general.

What is MVIX Technology?
Intel's MMX Technology adds several new
data types and some specialized machine
linguage instructions to an MMX-compliant
CPU. The new data types allow handling of
64-bit data. This is accomplished by
reassigning 64 bits of each of the eight 80-
bit floating-point registers as MMX registers.
The Gd-hit registers may be thought of as
eight 8-bit bytes, four 16-bit words; two 32-
bit double words, or one 64-bit guadword.

Since tlhie MMX hardware and floating-point
unit shure registers, Hoating-point and. MMX

instructions cannot normally be intermixed
without severe performance penalties; It
presently takes around 50 clock cycles to
toggle the floating-pointregister set betweeny
floating point use and MMX ‘operation.

o LT ST ST ¥ S :
In addition to the new 64-bit integer registe
set, MMX defines some new CPU
instructions that allow manipulation of these
quantities in parallel. When an operation is
performed on one byte.in a 64-bit register;
the same operation may be performed on
the other 7 bytes simultaneously. In
addition, a 4-wide parallel multiply-
accumulator allows 4 16-bit quantities to be
multiplied by 4 other 16-bit quantities and
purtially summed into two sums of two
multiplies each ina single instruction. This

powerful operation speeds traditional image
processing functions, such as convolution
and morphology.

The list below shows the complete set of
new instructions available in MMX for
manipulating 64-bit dara.

e ADDITION/SUBTRACTION. Add or
subtract 8 bytes, 4 words, or 2 doublewords
in parallel. Also includes saturation
hardware to prevent overflow or underflow
wraparound.

e COMPARE. Compare bytes, words, or
doublewords 1o build a Boolean mask
which can be used to selectively pick
clements in subsequent operations.

= MULTIPLY. Multiply four 16-bit words in
parallel, producing four 16-bit truncated
products.

* MULTIPLY/ACCUMULATE. Multiply four
pairs of 16-bit operands and sum the first
two products and the last two products 1o
give two 32-bit sums.

» SHIFT, Arithmetic and logical shifts and
rotates by word. doubleword, or quadword.
= PACK/UNPACK. Useful for converting
between 8-, 16-, and 32-bit data.

* LOGICAL. And, Or, Xor; up to 64 hits.

* MOVE., Move 32 or 64 bits between MMX
register and memory or other MMX register,
or move 32 bits between MMX registers and
mleger registers.

The best way to understand the operation of

these instructions and data types is by

example, The example algorithm to be
developed which is briefly described is
Statistical Variance.

The Variance Algorithm

I'me variance algorithm is commonly used in
niichine vision for presence/absence or flaw
detection. Variance asks the question, “Do
vou see something?” It does this by
measuring the width of the intensity
distribution of the pixel values. If all values
e more or less the same, the variance is
simall, Tf the values vary, with some dark
andd some light, the variance is large. Other
fuvourable properties of vdriance include:

* Variance is a real machine vision
algorithm, and so the properties illustrated
in optimizing it have real-waorld application.
* The variance caleulution is simple, but not
ivial. allowing us to roll our sleeves up u
. but not requiring that we get lost in 20-
ige code listings.

* Variance is not a typical multimedia
dlgorithm, and so receives litde treaiment in
the mainstream MMX literature. Therefore, it
should reveal more about the machine
Vision twist of MMX.

\ key difference between machine vision
Hgorithms and multimedia or image
Processing algorithms is that machine vision
gorithms frequently produce a reduction:

that is, many pixels go in, and only a
handful of results come out, In the case of
variance, our input can be 1 million pixels,
and the output is just a single double-
precision floating-point number. This
behaviour is actually sub-optimal for direct
MMX implementation, and requires some
different approaches.

* Another important feature of machine
vision algorithm implementations is that they
frequently work on odd-shaped data. Instead
df processing entire images, machine vision
algorithms are concerned only with small
Regions-Of-Interest (ROIs), requiring the
algorithms 10 behave properly when started
on odd boundaries, or when working with
ling lengths that are not multiples of “nice”
integers like 4. 8, or 16, Real machine vision
algorithms always need a few extra pieces 1o
deal with the “rough edges.”

Testing Setup

The code fragments in this article were all
developed and tested in Microsoft Visual
C++ 5.0, using a 266 MHz Intel PentiumPro
system with 128 MB of memory running
Microsoft Windows NT 4.0. Information is
provided on cade compiled with no
optinuzaton, as well as code automatically
optimized by the compiler for maximum
speed. All timing information is for a 1023 x
1023 8-hit image, with the odd image size
chosen o verify that the algorithms work
properly on odd-sized inputs.

Direct Implementation

Listing 1 shows a standard implementation
for variance on image data. It is assumed
that the width (dx) and height (dy) of the
image data are passed to the function, along
with a row-address-table (rat). The row
address able is a vector of dy elements,
cach pointing to the stant of an individual
row of pixel data. This is a good selection
for implementing machine vision dara where
ROIs frequently have highly variable sizes.

Listing 1: Classic variance with double accumulators
double VarfanceD{BYTE** raL.int di.int dy)
{
double sum=0;
doubile sumsg=0;
Tor{int x=0; x<dx; x++)
far(int y=0; y<dy: yi+)
[

double pixel=rat]y](u];
sume=pixal;
sumsqs+=piel” pixel;

1

double n = (double)dx " (double)dy:

if(n>1) return (0" sumsn - sum"sumyn/(n-1.);
else return 0;

¢ Run Time with Compiler Optimizer
147.8 ms

* Run Time without Compiler Optimizer
221.8 ms

IMAGE PROCESSING

Wl develop seven more versions of this
algorithm as we optimize it to get the final
run time down 1o 14.7 ms, almost exactly 10
times the speed of this initial version.

Data Size Optimization

The lirst problem with the implementation
in Listing 1 is the use of double precision
floating point math inside the inner loop.
Elitinating the inner loop floating point is
important for a number of reasons:

* Floating point operations are slower than
integer operations and standard CPUs have
only one floating point pipeline, limiting the
ability to do concurrent processing.

* MMX operations require the reassignment
of the floating point registers, making
simultaneous floating point and MMX
operations inefficient.

* The MMX arithmeltic unit only processes
integers, so floating-point algorithms are
difficult, if not impossible, to speed up using
MMX technology.

The sum of the squares of the pixel values
will always contain the larger value of the
two accumulators. Since the largest square is
2355 * 255 = 65,025, the worst case minimum
number of pixels that can be accumulated
into a 32-bit unsigned integer is
4,294,967,296 / 65,025 = 66.051 pixels. This
is roughly a 256 x 256 ROI.

Today. it is desirable to be able to handle
images of at least 1024 x 1024 without esror.
If overflow occurs, it will only oceur on the
sum of the squares; this would make the
final variance caleulation result in a negative
number, which obviously makes no sense.
For this reason, we can use 32-bit
accumulators in the optimized algorithm:
only in the event of a negative final result
will we have 1o recompute the sum of the
squares using a larger accumulator,

The converted algorithm with 32-hit
accumulation is shown in Listing 2. In
addition, the final variance calculation has
been split off as a separate function. In
testing, this final calculation was found 1o
run in about 0.002 ms, and i therefore
insignificant in the timing analyses 1o follow.

Listing 2: Variance with unsigned accumulators
double Variance1(BYTE®* rat,int dx,int dy)

|
unsighed sum=0;
unsigned sumsq=0;
for(int x=0; x<dx; x++)
for(int y=0; y<dy, y++)
{
unsigned pixel=rat(y){x];
sumt=pixel; '
Sumsq+=pixel* pixgl;
1
return FinalCalc{dx,dy,sum,sumsq);
|

double FinalCalc(int dx;int dy,unsigned sum unsigned sumsq)
|

double n = (double)dx* (double)dy;

double dsum=({double)sum;

MARCH ISSUE 1999

double dsumsy=(doublejsumsq;

iitn>1) return {(n*dsumsq - dsum*dsumjin/(n-1.);
else return 0;

* Run Time with Compiler Optimzer
121.0 ms

s Run Time without Compiler Optimzer
1545 ms

This is not a dramatic speed improvement,
but it does set the stage tor further
improvements by eliminating the floating-
point computation.

Using a Pointer Limit

The next optimization to consider is
elimination of the inner for loop. ceFor”
loops are complex structures requiring
counter variables; counter variables plice an
additional strain on the CPU regisier pool,
which in the Intel architecture is
uncomfortably small. Using a pointer
increment with an end-of-line limit greatly
increases speed since the incrementing
pointer is also the weloop counter.” This
technique is shown in List 3.

Listing 3: Using painter fimits
doubie Variance2(BYTE"* ratjint dx.int dy)
|
unsigned sum=0;
unsigned sumsgs(;
for(int y=0; y<dy; y++)
1
BYTE* pp=tatfy};
BYTE* pnF|anﬁpp+ux:
while{pp<ppFinal)
l
unsigned pixel={unsigned) " pps++;
suMm+=pixel;
Sumsq+=pixel pixel;
|
!
return FinalGale(dy,dy,sum,sumsag):
!

« Run Time with Compiler Optimzer

26.6 ms

¢ Run Time withour Compiler Optimzer
54.0 ms

This is 4 dramatic improvement over prior
implementatons, but we can stll improve
on this result by nearly 50%

Loop Unrolling

The next way 1o reduce inner loop
overhead is through loop unrolling. This
rechnique reduces the number of inner loop
iterations by repeating the inner laop
operations several times. In g reduction
algorithm such as variance, il is not
acceptable o go bevond the end of the line
and process extra pixels in the event that
dx is not an exact multiple of the pipeline
size. For this redson, we must do something
clse 1o make sure that the exact number of
pixels is processed per line.

In this implementation. a four-at-u-time

IMAGE PROCESSING

MARCH ISSUE

pipeline processes as many pixels as
possible, then the final 0-3 pixels are
processed one art a time. This concept will
be important in the MMX implementation
coming up, since the MMX registers will
load 8 pixels at a time.

Listing 4: Loop Unralling
double Variance3(BYTE** ratint di.int dy)
{

ifigxed) return Variance2{rat,dx.dy);

unsigned sum=0;
unsigned sumsq=0,
unsigned pixal,
tar(int y=0; yedy; y++)
{
BYTE* pp=rat[y};
BYTE* ppFinal=pp+dx;

/I shartan up the limit.and process 4 pixels per loop
BYTE*® ppUnwrap=ppFinal-3;
while{pp<ppUnwrap)
|
pixel={unsigned) "pp++;
sum 4= pixel;
sumsq -+=pixel " pixel;
pixel={unsigned)* pp++;
sum += pixel;
SUMSq 4= pixel"pixel,
pixel=(unsigned) " pp++;
sum ‘4= pixel;
Sumsq += pixel " pixel,
Jpixel={unsigned) "pp+,
sum += pixel;
SUMSsq += pixel* pixel;
1

17 get the 'rough’ 0-3 pixels at the end of the line
while(pp<ppFinal)
(
pivel = (unsigned)” pp++,
Sum 4= pixef;
SUmsH += pixel"pleel,

return FinalCale(dx.dy,sum sumsq);
|

* Run Time with Compiler Optimzer
22.3 ms

* Run Time without Compiler Optimzer
505 m

Unfortunately, this extra work does not add
much speed to the algorithm. Obviously,
the compiler optimizer was already doing a
pretty good job of keeping loop overhead
small to begin with. To make any significant
progress, we'll have o drop down into
assembly language.

First Assembly Version

The C version from Listing 3 (No unrolling)
is translated to PentiumPro assembler in
Listing 5 below. This is a mixed
C/Assembler version that allows the
assembly function to have a C header for
easy inclusion in € code.

Listing 5: First Assembly Version
double Varianced{BYTE"* ratint dx.int dy)
|

BYTE"* pixels=rat;

unsigned sum;

unsigned sumsq;

int w=dx;

19899

int h=dy,
_asm
I
xor ebxebx :row counter
Xor goLecx | sum
Xor edeede o sumsq
outer_loop:
mov esipixels | sel esi fo pix{row]
mov esi,[esi+ebx 4]
mov edi.esi ; end of line pointer
add edi,w
lnopi:
xor eaxeax o get 1 pixel into LSB of eax
mov al [esi]
add ecxgax :add into sum
mul - al . squdre (ax = al*al)

add edxsax | aod into squares

inc esi - next pixel
cmp ‘esiedi

ji loop1

inc b - next row
cmp ebx.h

il outar_laop

mov sum.ecx . save accumulations

v
mav sumsq,edx
|

return FinalCalc(dx,dy,sum,sumsg);
|

* Run Time (Assembly, No Optimizer)
23.3 ms

This version actually runs more slowly tha
the unrolled C To go faster than optimize:
C, we'll have to optimize the assembly
language. The point here is that since the
compiler is already doing a goad joh of
generating assembly language, we can onl
achieve further improvements if we build
assembly code more cleverly than the
compiler can. The unrolled version is the
next place to wy.

Second Assembly Versior
Implementing the loop unrolling metho-
dology of Listing 5 is shown in Listing 6.

Listing & Loop Unrolling in Assembler
double VarianceS(BYTE"* ratint dx,int dy)

if{dx<d) return Variance2(rat dx.dy):

Ll

BYTE"* pixels=rat;
unsigned sum;
unsigned sumsg;
int w=dx;
int h=dy.
_asm
|
xor ebxgbx row counter
XOr €CXEcK sum
xor edxedx sumsq

outer_loop:
mov eslpixels ; set esi to pix{row)
mov esh[est+abx"4]

=

mov ediesl ; end of line puinter - 3
add ediw
sub edi,3
loop2:
®or saxeax ; get pixal into al
mov 2t [esi]
add ecxgax | add into sum

2
mul al; square Il auter_loop dynamically paired to be in the pipe at the
add edw.eax | add Into sumsq . . time. F O e g

i itk SeaveaBniia same lfmx, -! m?hr’rmurg, [Ju‘ WO integer
wor @axeax repeald times (unrall) mov sumsq edx execution pipelines on the CPU can often
miov. al [esi+1] ! be simultaneously performing other non-
add ecxgax MMX operations.
muyl al return FinalCalc(dx dy.sum,sumsq);
add ady,eax | Listing 7 shows a good first try at an MMX

implementation.
xar eax,eax
mov -2l [esi+2] * Run Time (Assembly, No Optimizer)
add ecx.eax 192 ms Listing 7: Initial MMX Version
mul al) . doubie VariancaMMXO0(BYTE " rat,int:dx.int dy)
add edxeax Now we've broken the 20 ms barrier, but {
we can still improve more by moving 1o Inth'=dy
Xar el eax MMX Int w=dx;
mov al,[esi+3] TR BYTE™ pixels = rat;
add eoxpax Int AThrown = 4 - (W&3);
mul al - . unsigned sum =0;
add edxeax Version 7: Using MIMX unsigned sumsg=0;
While several more optimizations are —asm
add: asid’ ; bump. polnter by 4 i .) 3 1, . e i
Vi possible in the assembly program of Listing
omp esiedi) ; Ty ; mav abx,w; inner loop count
it loop2 O, 1o achieve any sigaiticant reducton in shr el 2 ; iCals/4
execution time will require more aggressive
add edl3 approach. pxar mmﬂ.mrr_xﬁ

aop3: o) . movd mm6,nThrown ; shifis for ragoed pixels
cmp esiedi testfor end-of-line The multiply/accumulator in the MMX psllg mm6,3
"ii :';;";‘:(‘"E s sbeing hardware can be used to generate sums (by " .
X 1 ! 1g-ata- . .) . : XOT mm3.mms gnerale constant 1 inea
mov alfesl] 7 op\st 04 hoelezan line multiplying by 1) and sums of squares (by P VWordlof m:%
add ecx.eax multiplying pixels by themselves). A direct empsaw’ mmd.mm4
mul - al MMX implementation must be done Ftibw | vt
add edxgax efully. 1 ara
G, &) carerully, however. pYor mmamma ; sum
jmp. loop3 Even though there is only one MMX PXoF© “rim3mimd : sums

instrictic sinelivie. thie cctition flaw is mov eax,0 7 eax=row# Lo pro¢ess next

il iae: instruction pipélir €, the execution flow is
inc @bx ;nextrowof pixels still a pipeline; that is, instructions are outer_loop:
cmp. ebxh executed in a series of steps, and can be mov esi,pixels ; set esl 1o plx{row]

R N N N N N N O N N R N R R R R R R R R

It’s no trick...
Leading Technology
Industrial Smart Cameras

it’s a vision
system

Built-in framegrabber and DSP - no PC required !

CCD-sensors from 500 x 580 to 1280 x 1024 pixels
DSP: Analog Devices ADSP2181
main memory from 2MB to 8MB DRAM
non-volatile memory from 0.5 1o 2 MB flash EPROM
serial interface: RS232 up to 1152 KBoud
PLC interfoce 4 inpuls, 4 outputs, 12-24V,
optically isclated
dimensions: 4% 2 x 11/2 inches

price: starting at

Over 100 lask-specific VC seriesbased solutions

are availeble for use in addressing commen machine

vision applicalions such as gauging, port orientation delermination,
object recognition, label inspection, assembly verification, sorting,
reading of 1D bar or 2D matrix codes, OCR, and patiern recogni-
tion/alignment. Solutions are also available which hancﬁe speciol tasks.

Vision Components GmbH
Litzenhardtstrafe 85

D-76135 Karlsruhe

Tel. +49 /721 / 98683-0, Fox -33
www.vision-components.de
sales@vision-components.de

U.5. office:

478 Putnam Avenue, Suite 2
Cambridge, MA 02139

Phone / Fox: (617) 492-1252
VsnCompUS@aol.com

Vision
Components

ENQUIRY No.

-

may esl,(esiveax”4]
mov. sexebx | loop count (nCols/d)
inner_laop:

movg min0,[esi] | get 8 pixgls
punpekibw mm1,mm0 ; unpack4 words Into mm1

psriw mm1,8 :move pixels into LSBs of
woris

movy mm2.mm1 ; copy for squaring

pmaddwd mm1.mmS ; 2'sums of 2 pixels as

dwords
patldd mmd,mm1 : actumulate sums
pmacddwd mm2,mmz2 ; these are pixel squares
paddd mm3,mmz2 T acsumulate squares
adg #514 ; we Just processad 4 pixels
loap Inner_loop - loop until row done

; redovinner [oop operation with partial mask to get odd pixels

;-atend of row
move mm0,fesi]
psily mme,mmé ; trash out nixels past dy-1
punpekibw ma,mm0
pariw mm1.8
movg mm2,mm1

pmaddwd ‘mmi,mm5 ;2 sumg of 2 pixals as

dworts
paddd mm4d,mm1 ; accumulate sums
pmaddwd mm2,mm2 ; these are pixel squares
paddd mm3,mm2
ine eax o next row
cmp eaxh ; loop until done all rows |l

outar_joop

moveg mm7,mmd ; sum is sitting in twa

pleces in mimd

psrlg mm7,32 slide upper piece to
battom of mm3

paddd mmd,mm7 ; now we've got the
complete sum

movd sum:mmé4

movg mm7,mm3 ; SAME FOR SUM SQ
patiq mm7.32 ; slide upper pieca to

battom of mm3

paddd mm3,mm7 1 now we've got the
complzte sumsq

movd sumsg,mm3

amms. + done MMX processing

|

return FinaiCale(dx dy,sum,sumsq);
|

Run Time (Assembly- No Optimizer)

15.7 mS

Version 8:

Scheduled WMINX

Io get the most speed out of MMX, we
have 1o think in terms of instruction
scheduling. There are many rules regarding
MMX seheduling. The most critical involve
output operand collision,

If one MMX instruction maodifies and MMX
register, and the next instruction uses that
register as an input, the pipeline will stall
for one or more clocks, Eliminating these
stalls can significantly increase throughput.
In Listing 7, several such stalls are apparent.
For example, the code sequence

pmaddwd
mm1,mm5 ; 2 sums of 2 pixels as

dwords

IMAGE PROCESSING

MARCH ISSUE

paddd

mméd,mm1 ; accurnulate sums

stalls since the paddd instruction must wait
for the pmaddwd instruction to complete
updating mm1 before it can proceed.
Listing 8 shows a much more aggressive
MMX implementation in which all 8 pixels
from the memory fetch are processed by
splitting four into one register and [our into
another. Since the data stream has been
partitioned into two pieces, instructions can
be scheduled to work alternately on
different pieces, and therefore keep the
pipeline busier. In addition, the non-MMX
operations, like peinter increments and
comparisons, are interspersed into the MMX
code where the can execure in parallel with
MMX instructions.

Listing 8: MMX Seheduling
double VarianceMMX3(BYTE"* rat,int di.int dy)
{

inth=dy;

intw=dx

BYTE"* pixels = rat;

it AThrown = 8 < (W&7);

ungigned sum =0;

unsigned sumsg=0;
_asm
[

may abx,w; Inner loop count

shr ehx,3 ; nCols/8

pxor mmé,mms

mavd mmé,nThrown ; shifts for ragged pixels

pslig mmé.3

pxar mms,mm5 ; gengrate constant 1 in ea
word of mm&

pompeqw mmd.mm4
psubw mm&,mm4

pxor mm4.mmd ; sum

pxor mm3,mm3 ; sumsq

mov eax;0 ; gax=row# lo process next
outer_loop:

mov eslpixels . set esi Lo pix[row]

mov i,[esi+eax4]

mayv ecxebx loop count (nCols/B)
inner_loop:

movq mmi,fesi] | gel 8 pixels

add esi,8 ; we just processed B pixels

punpekibw mmi,mm0 ; unpack 4 wds inta mm1,

next 4 in mm2
punpckhbw mm2,mm0
psriw mm1,8 ; maove pixels inlo LSBs of

words

pstlw mm2.8

movg mm0,mm1 ; copy first-4 in mmo, last
4 in mm?

mava mm7,mm2

pmaddwd mmi,mm5 ; compule sums by

multiplying by 1
pmaddwd mm2,mm5
mm0,mm0 ; squares

pmaddwd mm7,mm7

paddd mm1i,mm2 + suim the sums

paddd mm0,mm7 ; sum the squares

paddd mmd,mmi ; accumulate the sums
paddd mm3.mm0 T accumulate the squares
leop Inner_loop ; loop until raw dong

; redo inher loop operation with partial mask to get odd pixels

at end of row
movyg mmo0,[esi] ; get next 8 pixels; some to

1999

ignore
inc eax . prepars for next row K
pslig mmQ,mm8 ; trash out pixels past dy-1
cmp eax,h | sets comp fiag for |l instr

way below
punpcklbw mm1,mmO ; unpack 8 pixels into 4
and 4
punpekhbw mm2,mmo
psriw mmi.8
pariw mm2,8
mavq mm0,mm1 ; copies for squaring
movg mm7,mm2

pmaddwd mim1,mm3 ; compite sums
pmaddwd mm2,mms

pmaddwd mm0,mmD ; compute squares
priiaddwd mm7,mm7

paddd mmimm2 ; sum the sums,
paddd mmo,mm7 ; sum the squares
paddd mmé,mm? ; accumulate the <
paddd mm3,mmo ; aceumulate the s
il auter_loop

mava mm7,mmé ; sum is sitting in two

pleces in mm4

movq mmB,mm3 ; sumsaq is sitting in two
pieces In mm3

psrig mm7,32 ; slide upper piece 1o

—h bottom of mm?7

psrlg mm6,32 slide upper piece to
bottom of mmé

paddd mmd,mm7 : now we've got It
camplete sum

paddd mm3,mmb : now we've got th
complete sumsq

movd summmd

movd sumsgmm3

emms. ; done MMX processing

return FinalCale(dx.dy.sum,sumsaj;

Run Time (Assembly- No Optimizer)
14.7 m§

Conclusion

There are still some more optimization
could be made, but the most importan
have been taken.

...lo get the
most speed o
of MMX, w
have to thin
in terms oj
instruction
schedutling

ENQUIRY No. 201

