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PPP ��(k + 1jk) =RRR(k+ 1) +RRR
�(k + 1)

+HHHd(k + 1)PPP (k + 1jk)HHHT

d (k + 1)

=RRR(k+ 1)

+
1

r

r

i=1

fZZZi(k + 1jk)� ẑzz(k+ 1jk)g

� fZZZi(k + 1jk)� ẑzz(k+ 1jk)gT (35)

PPP xz(k + 1jk) =PPP (k + 1jk)HHHT

d (k + 1);

=
1

r

r

i=1

fXXX i(k + 1jk)� x̂xx(k + 1jk)g

� fZZZi(k + 1jk)� ẑzz(k+ 1jk)gT : (36)

These update equations are identical to the UKF process update
equations (19)–(22), knowing that the UKF definesr = 2(n + �)
regression points:n pointsXXX i(k + 1jk), n pointsXXX i+n(k + 1jk),
and2� pointsXXX o(k + 1jk) (11)–(13).

III. A DAPTATIONS TO THEORIGINAL UKF

Several adaptations to the original UKF framework have been pro-
posed. These adaptations use other criteria to choose the regression
points and/or their weights; sometimes the calculated covariance ma-
trix is increased artificially.

• The weights can be chosen as real numbers, the UKF then per-
forms a weighted linear regression.

• Sometimes, the UKF is used with a� < 0 (resulting in negative
weights) (see the aforementioned paper1 and [1]). In this case,
the calculated covariance matrices can be nonpositive, semidef-
inite. To overcome this problem, the covariances are artificially
increased

PPP
mod(k + 1jk) =PPP (k + 1jk)

+ fXXX 0(k + 1jk)� x̂xx(k + 1jk)g

� fXXX 0(k + 1jk)� x̂xx(k + 1jk)gT (37)

PPP
mod
zz (k + 1jk) =PPP zz(k + 1jk)

+ fZZZ0(k + 1jk)� ẑzz(k + 1jk)g

� fZZZ0(k + 1jk)� ẑzz(k+ 1jk)gT : (38)

• The scaled unscented transformation [5] introduces one more de-
gree of freedom in the choice of the regression points and their
weights (parameter�). In this case, the calculated covariances
lie between those of the original formulation and the previously
described modified form. The covariances can be increased even
more by introducing another parameter (�).

• The reduced sigma point filters [2], [6] minimize the number of
regression points ton+1 (the so-called simplex sigma points) for
ann-dimensional state space. This means that the linear regres-
sion is exact, i.e., the linearized function is a hyperplane through
the regression points. Hence,QQQ� andRRR� are zero: the lineariza-
tion errors are not taken into account. In this case, the calculated
covariances are too small and need to be increased artificially.

• Also some other filters are linear regression Kalman filters, e.g.,
the central difference filter [7] and the first-order divided differ-
ence filter [8], [9] which choose2n regression points.

IV. CONCLUSION

This comment has shown that the UKF is a special case of the LRKF,
i.e., 1) it linearizes the process and measurement functions by statis-

tical linear regression of the functions through some regression points;
and 2) it represents the extra uncertainty on a linearized function due
to linearization errors by the covariance of the deviations between the
nonlinear and the linearized function in the regression points. Looking
at the UKF in this way: 1) allows a better understanding of the perfor-
mance of the estimator for specific applications; and 2) allows to un-
derstand/develop adaptations to the estimator which guarantee better
performance in applications where the original estimator does not as-
sure good results (e.g., when dealing with discontinuous functions).
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Authors’ Reply

Simon Julier and Jeffrey Uhlmann

In [1], Lefebvreet al.demonstrate the validity of the so-called un-
scented Kalman filter (UKF) approach1 from a least-squares regression
perspective. We use the definition that the Kalman filter is the minimum
least squares update algorithm. From first principles and using notation
from the aforementioned paper,1 it can be proved that this is

x̂(k + 1jk + 1) = x̂(k + 1jk) +W(k + 1)�(k + 1)

P(k+ 1jk + 1) =P(k+ 1jk)

�W(k + 1)P��(k + 1jk)WT (k + 1)

�(k + 1) = z(k + 1)� ẑ(k + 1jk)

W(k + 1) =Px�(k + 1jk)P�1�� (k + 1jk):
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The only difference between the extended Kalman filter (EKF), the
UKF, and linear regression Kalman filter (LRKF) is how the prediction
quantities are calculated. (We note in passing that other authors have
done the same using quadrature and other methods [2]). They refer to
their formulation of the estimation problem as being an LRKF. This
analysis provides extremely useful insights into the properties of the
UKF. For example, the matrixA in (28) of the paper1 can be regarded
as a meaningful approximation to the “Jacobian” of the observation.
Such “Jacobians” are valuable in many applications including the fu-
sion of measurements with known time delays [3]. Lefebvreet al.con-
clude that the UKF is a special case of a linear regression.

However, we believe that their conclusion is an unnecessarily narrow
interpretation of this result. According to their analysis,anyprediction
algorithm which can be expressed in terms of (23) to (26) of the paper1

is a type of linear regression. This not only includes the UKF, but many
other Monte Carlo or particle-based filters, including the SIR filter de-
scribed in [4]. Rather, we believe that a fairer interpretation is that any
particle based filtering algorithm (including the UKF) implicitly per-
forms a linear regression. Furthermore, unlike the LRKF, the UKF can
be used to propagate higher order information about the distribution, if
it is known, by extending the sigma point set. In [5] (which was cited in
the aforementioned paper1), we demonstrated that the approach could
be used to maintain and propagate information about the third-order
moments.

We also note that the statement “This means that the linear regression
is exact, i.e., the linearized function is hyperplane through the sampling
points. Hence,Q� andR� are zero: the linearization errors are not
taken into account” isnot an inherent property of the reduced sigma
point algorithm. It is a special case of the scaling algorithm in the limit
as the scaling parameter tends to 0.
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