Unscented Filtering and Nonlinear Estimation

SIMON J. JULIER, MEMBER, IEEE, AND JEFFREY K. UHLMANN, MEMBER, IEEE

Invited Paper

The extended Kalman filter (EKF) is probably the most widely
used estimation algorithm for nonlinear systems. However, more
than 35 years of experience in the estimation community has shown
that is difficult to implement, difficult to tune, and only reliable for
systems that are almost linear on the time scale of the updates. Many
of these difficulties arise from its use of linearization. To overcome
this limitation, the unscented transformation (UT) was developed as
a method to propagate mean and covariance information through
nonlinear transformations. It is more accurate, easier to implement,
and uses the same order of calculations as linearization. This paper
reviews the motivation, development, use, and implications of the
UT.
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I. INTRODUCTION

This paper considers the problem of applying the Kalman
filter (KF) to nonlinear systems. Estimation in nonlinear
systems is extremely important because almost all practical
systems—from target tracking [1] to vehicle navigation,
from chemical process plant control [2] to dialysis ma-
chines—involve nonlinearities of one kind or another.
Accurately estimating the state of such systems is extremely
important for fault detection and control applications. How-
ever, estimation in nonlinear systems is extremely difficult.
The optimal (Bayesian) solution to the problem requires the
propagation of the description of the full probability density
function (pdf) [3]. This solution is extremely general and
incorporates aspects such as multimodality, asymmetries,
discontinuities. However, because the form of the pdf is not
restricted, it cannot, in general, be described using a finite
number of parameters. Therefore, any practical estimator
must use an approximation of some kind. Many different
types of approximations have been developed; unfortunately,
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most are either computationally unmanageable or require
special assumptions about the form of the process and
observation models that cannot be satisfied in practice. For
these and other reasons, the KF remains the most widely
used estimation algorithm.

The KF only utilizes the first two moments of the state
(mean and covariance) in its update rule. Although this is a
relatively simple state representation, it offers a number of
important practical benefits.

1) The mean and covariance of an unknown distribution
requires the maintenance of only a small and constant
amount of information, but that information is suffi-
cient to support most kinds of operational activities
(e.g., defining a validation gate for a search region for
a target). Thus, it is a successful compromise between
computational complexity and representational flexi-
bility. By contrast, the complete characterization of an
evolving error distribution requires the maintenance of
an unbounded number of parameters. Even if it were
possible to maintain complete pdf information, that in-
formation may not be operationally useful (e.g., be-
cause the exploitation of the information is itself an
intractable problem).

2) The mean and covariance (or its square root) are
linearly transformable quantities. For example, if an
error distribution has mean X and covariance X,
the mean and covariance of the distribution after it
has undergone the linear transformation T is simply
Tx and TX,TT. In other words, mean and covari-
ance estimates can be maintained effectively when
subjected to linear and quasilinear transformations.
Similar results do not hold for other nonzero moments
of a distribution.

3) Sets of mean and covariance estimates can be
used to characterize additional features of distribu-
tion, e.g., significant modes. Multimodal tracking
methods based on the maintenance of multiple mean
and covariance estimates include multiple-hypoth-
esis tracking [4], sum-of-Gaussian filters [5], and
Rao-Blackwellized particle filters [6].
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The most common application of the KF to nonlinear
systems is in the form of the extended KF (EKF) [7],
[8]. Exploiting the assumption that all transformations
are quasi-linear, the EKF simply linearizes all nonlinear
transformations and substitutes Jacobian matrices for the
linear transformations in the KF equations. Although the
EKF maintains the elegant and computationally efficient
recursive update form of the KF, it suffers a number of
serious limitations.

1) Linearized transformations are only reliable if the
error propagation can be well approximated by a
linear function. If this condition does not hold, the
linearized approximation can be extremely poor.
At best, this undermines the performance of the
filter. At worst, it causes its estimates to diverge
altogether. However, determining the validity of this
assumption is extremely difficult because it depends
on the transformation, the current state estimate, and
the magnitude of the covariance. This problem is
well documented in many applications such as the
estimation of ballistic parameters of missiles [1],
[9]-[12] and computer vision [13]. In Section II-C we
illustrate its impact on the near-ubiquitous nonlinear
transformation from polar to Cartesian coordinates.

2) Linearization can be applied only if the Jacobian ma-
trix exists. However, this is not always the case. Some
systems contain discontinuities (for example, the
process model might be jump-linear [14], in which the
parameters can change abruptly, or the sensor might
return highly quantized sensor measurements [15]),
others have singularities (for example, perspective
projection equations [16]), and in others the states
themselves are inherently discrete (e.g., a rule-based
system for predicting the evasive behavior of a piloted
aircraft [17]).

3) Calculating Jacobian matrices can be a very difficult
and error-prone process. The Jacobian equations
frequently produce many pages of dense algebra that
must be converted to code (e.g., see the Appendix
to [18]). This introduces numerous opportunities for
human coding errors that may undermine the perfor-
mance of the final system in a manner that cannot be
easily identified and debugged—especially given the
fact that it is difficult to know what quality of perfor-
mance to expect. Regardless of whether the obscure
code associated with a linearized transformation is
or is not correct, it presents a serious problem for
subsequent users who must validate it for use in any
high integrity system.

The unscented transformation (UT) was developed to ad-
dress the deficiencies of linearization by providing a more
direct and explicit mechanism for transforming mean and co-
variance information. In this paper we describe the general
UT mechanism along with a variety of special formulations
that can be tailored to the specific requirements of different
nonlinear filtering and control applications. The structure of
this paper is as follows. Section II reviews the relationship
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between the KF and the EKF for nonlinear systems and mo-
tivates the development of the UT. An overview of the UT is
provided in Section IIT and some of its properties are dis-
cussed. Section IV discusses the algorithm in more detail
and some practical implementation considerations are con-
sidered in Section V. Section VI describes how the transfor-
mation can be applied within the KF’s recursive structure.
Section VII considers the implications of the UT. Summary
and conclusions are given in Section VIII. The paper also in-
cludes a comprehensive series of Appendixes which provide
detailed analyses of the performance properties of the UT
and further extensions to the algorithm.

II. PROBLEM STATEMENT
A. Applying the KF to Nonlinear Systems

Many textbooks derive the KF as an application of
Bayes’ rule under the assumption that all estimates have
independent, Gaussian-distributed errors. This has led to
a common misconception that the KF can only be strictly
applied under Gaussianity assumptions. However, Kalman’s
original derivation did not apply Bayes’ rule and does not
require the exploitation of any specific error distribution
informaton beyond the mean and covariance [19].

To understand the the limitations of the EKF, it is neces-
sary to consider the KF recursion equations. Suppose that the
estimate at time step n — 1 is described by the mean p,, ;
and covariance K,,_. It is assumed that this is consistent in
the sense that [7]

K, -Ele,el] >0 (1)
where e,, = x — u,, is the estimation error.!

The KF consists of two steps: prediction followed by up-
date. In the prediction step, the filter propagates the estimate
from a previous time step n — 1 to the current time step n.
The prediction is given by

B, = E[f[p, 1, un, by, 1]
K, = E [e,e]]
The update (or measurement update) can be derived as the

linear minimum mean-squared error estimator [20]. Given
that the mean is to be updated by the linear rule

Vn =¥Yn — yn
Vn = E[g[p,, va]]

the weight (gain) matrix W, is chosen to minimize the trace
of the updated covariance K,,. Its value is calculated from

Ly a—1

W, =K.'§

n

Ty . . . ~
where K, is the cross covariance between the error in fi,,
and the error in y,, and S,, is the covariance of v,,.

LA conservative estimate replaces the inequality with a strictly greater
than relationship.
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Using this weight, the updated covariance is
K,=K, - W,S5,WZ.

Therefore, the KF update equations can be applied if sev-
eral sets of expectations can be calculated. These are the pre-
dicted state (f,,,K,), the predicted observation (§,,,S,),
and the cross covariance between the prediction and the ob-
servation (K Zy) When all of the system equations are linear,
direct substitution into the above equations gives the familiar
linear KF equations. When the system is nonlinear, methods
for approximating these quantities must be used. Therefore,
the problem of applying the KF to a nonlinear system be-
comes one of applying nonlinear transformations to mean

and covariance estimates.

B. Propagating Means and Covariances Through
Nonlinear Transformations

Consider the following problem. A random variable x has
mean X and covariance ¥ ,. A second random variable, z, is
related to x through to the nonlinear transformation

z = h[x]. 2)

The problem is to calculate a consistent estimate of z with
mean Z and covariance X . Both the prediction and update
steps of a KF can be written in this form.2

Taking the multidimensional Taylor series expansion

z=h[Xx + €]
_ D2h  D2h Dih
=h[x]+Deh+ =+ ==+ ==+ ()
where the Dcoh operator evaluates the total differential of
h[-] when perturbed around a nominal value x by e. The
ith term in the Taylor series for hJ-] is

i

; N,
Dih 1 [<& 0
—= Zej%j h(x] 4)
j=1

7

X=X

where ¢; is the jth component of e. Therefore, the ith term
in the series is an sth-order polynomial in the coefficients of
e, whose coefficients are given by derivatives of h[-].

In Appendix I we derive the full expression for the mean
and covariance using this series. Linearization assumes that
all second and higher order terms in the Taylor series expan-
sion are negligible, i.e.,

z ~ h[x] + Dch.

Taking outer products and expectations, and by exploiting the
assumption that the estimation error is approximately zero-
mean, the mean and covariance are

2= h[x] )

2. = AX)E,AT(x) (6)

2The prediction corresponds to the case whenx = p,_,,z = fr, _,,and

h[-] = £ - ]. The update step corresponds to the case whenx = i, ,.z =
ynv and h[] = g[]

where A(x) is the Jacobian of h[-] and the fact that
E[Dch(Dch)T] = A(x)E,AT(x) has been used.
However, the full Taylor series expansion of this func-
tion, given in Appendix I, shows that these quantities contain
higher order terms that are a function of the statistics of e and
higher derivatives of the nonlinear transformation. In some
situations, these terms have negligible effects. In other situa-
tions, however, they can significantly degrade estimator per-
formance. One dramatic and practically important example is
the transformation from polar to Cartesian coordinates [12].

C. Polar to Cartesian Coordinate Transformations

One of the most important and ubiquitous transformations
is the conversion from polar to Cartesian coordinates. This
transformation forms the foundation for the observation
models of many sensors, from radar to laser range finders.
A sensor returns polar information (r, #) in its local coordi-
nate frame that has to be converted into an (z,y) position
estimate of the target position in some global Cartesian

coordinate frame
T 7 cosf
<y>_<rsin6>' Q)

Problems arise when the bearing error is significant. As an
example, a range-optimized sonar sensor can provide fairly
good measurements of range (2-cm standard deviation) but
extremely poor measurements of bearing (standard deviation
of 15°) [21]. The effects of the large error variances on the
nonlinearly transformed estimate are shown in Fig. 1, which
shows the results for a target whose true position is (0, 1).
Fig. 1(a) plots several hundred (z,y) samples. These were
derived by taking the actual (, #) value of the target location,
adding Gaussian zero-mean noise terms to each component,
and then converting to (z,y) using (7). As can be seen, the
points lie on a “banana”-shaped arc. The range error causes
the points to lie in a band, and the bearing error causes this
region to be stretched around the circumference of a circle.
As a result, the mean does not lie at (0, 1) but is actually
located closer to the origin. This is confirmed in Fig. 1(b),
which compares the mean and covariance of the converted
coordinates using Monte Carlo sampling and linearization.
The figure plots the 1o contours calculated by each method.
The 1o contour is the locus of points {y : (y — y)P; ' (y —
¥) = 1} and is a graphical representation of the size and
orientation of X,,.

Compared to the “true” result, the linearized estimate is
biased and inconsistent. This is most evident in the y direc-
tion. The linearized mean is at 1.0 m but the true mean is at
96.7 cm. Because it is a bias that arises from the transfor-
mation process itself, the same error with the same sign will
be committed every time a coordinate transformation takes
place. Even if there were no bias, the transformation would
still be inconsistent because it underestimates the variance in
the ¥y component.?

31t could be argued that these errors arise because the measurement er-
rors are unreasonably large. However, Lerro [12] demonstrated that, in radar
tracking applications, the transformations can become inconsistent when the
standard deviation of the bearing measurement is less than a degree.
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Fig. 1. The true nonlinear transformation and the statistics calculated by Monte Carlo analysis and
linearization. Note that the scaling in the  and y axes are different. (a) Monte Carlo samples from
the transformation and the mean calculated through linearization. (b) Results from linearization.
The true mean is at X and the uncertainty ellipse is solid. Linearization calculates the mean

at o and the uncertainty ellipse is dashed.

There are several strategies that could be used to address
this problem. The most common approach is to apply lin-
earization and “tune” the observation covariance by padding
it with a sufficiently large positive definite matrix that the
transformed estimate becomes consistent.* However, this ap-
proach may unnecessarily increase the assumed uncertainty
in some directions in the state space, and it does nothing to
address the problem of the bias. A second approach would
be to perform a detailed analysis of the transformations and

4This process is sometimes euphemistically referred to as “injecting sta-
bilizing noise” [22].
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derive precise closed-form solutions for the transformed
mean and covariance under specific distribution assump-
tions. In the case of the polar-to-Cartesian transformation of
an assumed Gaussian distributed observation estimate, such
closed-form solutions do exist [12], [23]. However, exact
solutions can only be derived in special cases with highly
specific assumptions. A slightly more general approach is to
note that linearization errors arise from an implicit trunca-
tion of the Taylor series description of the true transformed
estimate. Therefore, maintaining higher order terms may
lead to better results. One of the first to attempt this was
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Nonlinear
Transformation

Fig. 2. The principle of the UT.

Athans [9], who developed a second-order Gaussian filter.
This filter assumes that the model is piecewise quadratic
and truncates the Taylor series expansion after its second
term. However, to implement this filter, the Hessian (tensor
of second-order derivatives) must be derived. Typically,
deriving the Hessian is even more difficult than deriving a
Jacobian, especially for a sophisticated, high-fidelity system
model. Furthermore, it is not clear under what conditions
the use of the Hessian will yield improved estimates when
the strict assumption of Gaussianity is violated.

In summary, the KF can be applied to nonlinear systems
if a consistent set of predicted quantities can be calculated.
These quantities are derived by projecting a prior estimate
through a nonlinear transformation. Linearization, as applied
in the EKF, is widely recognized to be inadequate, but the al-
ternatives incur substantial costs in terms of derivation and
computational complexity. Therefore, there is a strong need
for a method that is provably more accurate than lineariza-
tion but does not incur the implementation nor computational
costs of other higher order filtering schemes. The UT was de-
veloped to meet these needs.

III. THE UNSCENTED TRANSFORMATION

A. Basic Idea

The UT is founded on the intuition that it is easier to ap-
proximate a probability distribution than it is to approxi-
mate an arbitrary nonlinear function or transformation [24].
The approach is illustrated in Fig. 2—a set of points (sigma
points) are chosen so that their mean and covariance are X
and 3. The nonlinear function is applied to each point, in
turn, to yield a cloud of transformed points. The statistics of
the transformed points can then be calculated to form an es-
timate of the nonlinearly transformed mean and covariance.

Although this method bares a superficial resemblance to
particle filters, there are several fundamental differences.
First, the sigma points are not drawn at random; they are
deterministically chosen so that they exhibit certain specific
properties (e.g., have a given mean and covariance). As a
result, high-order information about the distribution can be
captured with a fixed, small number of points. The second

difference is that sigma points can be weighted in ways
that are inconsistent with the distribution interpretation of
sample points in a particle filter. For example, the weights
on the points do not have to lie in the range [0, 1].

A set of sigma points S consists of p 4 1 vectors and their
associated weights S = {i = 0,1,...,p : x W®}. The

weights V() can be positive or negative but, to provide an
unbiased estimate, they must obey the condition

])
Z W@ =1. (8)
1=0

Given these points, ¥ and X, are calculated as follows.

1) Instantiate each point through the function to yield the
set of transformed sigma points

2 —h [Xm} ,

2) The mean is given by the weighted average of the
transformed points

p
7= Z W®Hz®, )
1=0

3) The covariance is the weighted outer product of the
transformed points

= =3 wh {z@) _ z} {z@) _ z}T. (10)

P
i=0

The statistics of any other function can be calculated in a
similar manner.

One set of points that satisfies the above conditions con-
sists of a symmetric set of 2V, points that lie on the /N, th
covariance contour [24]

xD =g+ (V/N.Z,)i

w® =1/2N,
x0HN) = x — (/N 3,);
Wisn, = 1/2N, n
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where (v/N,X,.); is the ith row or column’ of the matrix
square root of N3, (the original covariance matrix multi-
plied by the number of dimensions), and W is the weight
associated with the sth point.

Despite its apparent simplicity, the UT has a number of

important properties.

1) Because the algorithm works with a finite number of
sigma points, it naturally lends itself to being used in
a “black box” filtering library. Given a model (with
appropriately defined inputs and outputs), a standard
routine can be used to calculate the predicted quantities
as necessary for any given transformation.

2) The computational cost of the algorithm is the same
order of magnitude as the EKF. The most expensive
operations are calculating the matrix square root and
the outer products required to compute the covariance
of the projected sigma points. However, both opera-
tions are O(N2), which is the same as evaluating the
N, x N, matrix multiplications needed to calculate
the EKF predicted covariance.® This contrasts with
methods such as Gauss—Hermite quadrature [26] for
which the required number of points scales geometri-
cally with the number of dimensions.

3) Any set of sigma points that encodes the mean and
covariance correctly, including the set in (11), calcu-
lates the projected mean and covariance correctly to
the second order (see Appendixes I and II). There-
fore, the estimate implicitly includes the second-order
“bias correction” term of the truncated second-order
filter, but without the need to calculate any derivatives.
Therefore, the UT is not the same as using a central dif-
ference scheme to calculate the Jacobian.”

4) The algorithm can be used with discontinuous trans-
formations. Sigma points can straddle a discontinuity
and, thus, can approximate the effect of a discontinuity
on the transformed estimate. This is discussed in more
detail in Section VII.

The improved accuracy of the UT can be demonstrated
with the polar-to-Cartesian transformation problem.

B. The Demonstration Revisited

Using sigma points determined by (11), the performance
of the UT is shown in Fig. 3. Fig. 3(a) plots the set of
transformed sigma points z("). The original set of points
x(") were symmetrically distributed about the origin and the
nonlinear transformation has changed the distribution into a
triangle with a point at the center. The mean and covariance
of the UT, compared to the true and linearized values, is
shown in Fig. 3(b). The UT mean is extremely close to that

SIf the matrix square root A of P is of the form P = AT A, then the
sigma points are formed from the rows of A. However, if the matrix square
root is of the form P = A AT, the columns of A are used.

6The matrix square root should be calculated using numerically efficient
and stable methods such as the Cholesky decomposition [25].

TLefebrve recently argued for an alternative interpretation of the UT as
being an example of least-squares regression [27]. Although regression anal-
ysis can be used to justify UT’s accuracy benefits over linearization, it does
not provide a prescriptive framework, e.g., for deriving the extensions to
higher order information described in Section IV.
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of the true transformed distribution. This reflects the effect
of the second-order bias correction term that is implicitly
and automatically incorporated into the mean via the UT.
However, the UT covariance estimate underestimates the
true covariance of the actual transformed distribution.
This is because the set of points described above are only
accurate to the second order. Therefore, although the mean
is predicted much more accurately, the UT predicted covari-
ance is of the same order of accuracy as linearization. The
transformed estimate could be made consistent by adding
stabilising noise to increase 3, ; however, the UT framework
provides more direct mechanisms that can greatly improve
the accuracy of the estimate. These are considered next.

IV. EXPLOITING HIGHER ORDER INFORMATION

The example in the previous section illustrates that the UT,
using the sigma point selection algorithm in (11), has signifi-
cant implementation and accuracy advantages over lineariza-
tion. However, because the UT offers enough flexibility to
allow information beyond mean and covariance to be incor-
porated into the set of sigma points, it is possible to pick a
set that exploits any additional known information about the
error distribution associated with an estimate.

A. Extending the Symmetric Set

Suppose a set of points is constructed to have a given mean
and covariance, e.g., according to (11). If another point equal
to the given mean were added to the set, then the mean of the
set would be unaffected, but the remaining points would have
to be scaled to maintain the given covariance. The scaled re-
sult is a different sigma set, with different higher moments,
but with the same mean and covariance. As will be shown,
weighting this newly added point provides a parameter for
controlling some aspects of the higher moments of the dis-
tribution of sigma points without affecting the mean and co-
variance. By convention, let W (%) be the weight on the mean
point, which is indexed as the zeroth point. Including this
point and adjusting the weights so that the normality, mean,
and covariance constraints are preserved, the new point dis-
tribution becomes?®

x© =x
w© — 1)
x =g+ %Ez '
. 1—w©
w@® — N
x4 =g (|- _NI;/@ =)
W+N) _ 1_27;‘:(0) (12)

81n the scalar case, this distribution is the same as the perturbation result
described by Holtzmann [28]. However, the generalization of Holtzmann’s
method to multiple dimensions is accurate only under the assumption that
the errors in each dimension are independent of one another.
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Fig. 3. The mean and standard deviation ellipses for the true statistics, those calculated through
linearization and those calculated by the UT. (a) The location of the sigma points which have
undergone the nonlinear transformation. (b) The results of the UT compared to linearization and
the results calculated through Monte Carlo analysis. The true mean is at X and the uncertainty
ellipse is dotted. The UT mean is at 4 and is the solid ellipse. The linearized mean is at o and

its ellipse is also dotted.

The value of W(® controls how the other positions will
be repositioned. If W (9) > 0, the points tend to move further
from the origin. If w© < 0 (avalid assumption because the
UT points are not a pdf and so do not require nonnegativity
constraints), the points tend to be closer to the origin.

The impact of this extra point on the moments of the dis-
tribution are analyzed in detail in Appendix II. However, a
more intuitive demonstration of the effect can be obtained
from the example of the polar-to-Cartesian transformation.

Given the fact that the assumed prior distribution (sensor
error) is Gaussian in the local polar coordinate frame of the
sensor, and using the analysis in Appendix II, W () = 1 /3
can be justified because it guarantees that some of the
fourth-order moments are the same as in the true Gaussian
case. Fig. 4(a) shows the points generated with the aug-
mented set. The additional point lies at the mean calculated
by the EKF (0, 1). The effect is shown in more detail in
Fig. 4(b). These dramatic improvements come from the
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Fig. 4. The mean and standard deviation ellipses for the true statistics, those calculated through
linearization and those calculated by the UT. (a) The location of the sigma points which have
undergone the nonlinear transformation. (b) The results of the UT compared to linearization and
the results calculated through Monte Carlo analysis. The true mean is at X and the uncertainty
ellipse is dotted. The UT mean is at 4 and is the solid ellipse. The linearized mean is at o and

its ellipse is also dotted.

fact that the extra point exploits control of the higher order
moments.’

B. General Sigma Point Selection Framework

The extension in the previous section shows that
knowledge of higher order information can be partially

9Recently, Ngrgaard developed the DD?2 filtering algorithm, which is
based on Stirling’s interpolation formula [29]. He has proved that it can
yield more accurate estimates than the UT with the symmetric set. However,
this algorithm has not been generalized to higher order information.
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incorporated into the sigma point set. This concept can be
generalized so that the UT can be used to propagate any
higher order information about the moments.

Because no practical filter can maintain the full distribu-
tion of the state, a simpler distribution of the form p(x) may
be heuristically assumed at time step k. If p(x) is chosen
to be computationally or analytically tractable to work with,
and if it captures the critical salient features of the true distri-
bution, then it can be used as the basis for a good approximate
solution to the nonlinear transformation problem. One possi-
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bility explored by Kushner is to assume that all distributions
are Gaussian [30], i.e., p(x) is a Gaussian distributed random
variable with mean X and covariance X,,.

Although Gaussianity is not always a good assumption
to make in many cases, it provides a good example to
demonstrate how a set of sigma points can be used to cap-
ture, or match, different properties of a given distribution.
This matching can be written in terms of a set of nonlinear
constraints of the form

c[S;pa(x)] = 0.

For example, the symmetric set of points given in (11)
matches the mean and covariance of a Gaussian, and by
virtue of its symmetry, it also matches the third moment
(skew = 0) as well. These conditions on c[-,-] can be
written as

cilS.p(x)] =) WOx® —x

M-

-
Il
<

WO (9 - %) (x0 - x) - 3,

[
M=

C2[87p:r(x)]

~

o

Il
2

3

cafS pa(x)] = > W (x - x)

z z

The constraints are not always sufficient to uniquely de-
termine the sigma point set. Therefore, the set can be refined
by introducing a cost function ¢[S, p(x)] which penalizes
undesirable characteristics. For example, the symmetric set
given in (12) contains some degrees of freedom: the matrix
square root and the value W (%), The analysis in Appendix II
shows that W (?) affects the fourth and higher moments of the
sigma point set. Although the fourth-order moments cannot
be matched precisely, W (%) can be chosen to minimize the
errors.

In summary, the general sigma point selection algorithm
is

ngn c[S, p.(x)] subject to c[S,p.(x)] = 0. (13)

Two possible uses of this approach are illustrated in Ap-
pendixes III and IV. Appendix III shows how the approach
can be used to generate a sigma point set that contains the
minimal number of sigma points needed to capture mean
and covariance (/N + 1 points). Appendix IV generates a
set of 2V2 + 1 points that matches the first four moments of
a Gaussian exactly. This set cannot precisely catch the sixth
and higher order moments, but the points are chosen to min-
imize these errors.

Lerner recently analyzed the problem of stochastic
numerical integration using exact mononomials [31]. As-
suming the distribution is symmetric, he gives a general
selection rule which, for precision 3, gives the set of points
in (12) and, for precision 5, gives the fourth-order set of
points given in Appendix I'V. His method also provides exact
solutions for arbitrary higher order dimensions. Tenne has
considered the problem of capturing higher order moments
without the assumption of symmetry [32]. He has developed

a sigma point selection algorithm that captures the first eight
moments of a symmetric one-dimensional distribution using
only five points.

This section has discussed how the UT can be extended
to incorporate more information about the distribution when
this information is available. However, it is frequently the
case that only the first two moments of the distribution are
known, and imposing incorrect assumptions about these
higher order terms might significantly degrade estimator
performance. With the UT, it is possible to refine the point
set to minimize the effects of the assumptions made about
higher order terms.

V. MITIGATING UNMODELED EFFECTS

In general, the Taylor series expansion for a set of trans-
formed sigma points contains an infinite number of terms.
Although it is possible to match the series expansion for a
given distribution up to a given order, the accuracy will be de-
termined by the higher order terms. In most practical contexts
there is no information available about these higher terms, so
analytically any set of sigma points that matches the available
information is as good as any other. However, there are other
pragmatic considerations that may give preference to some
sigma sets over others.

Suppose that only mean and covariance information
is available for some N,-dimensional state estimate. This
information can be captured in a simplex set of IV, + 1 sigma
points (see Appendix III), which is a significantly smaller
set—and, thus, computationally less burdensome—than the
2N, set introduced in (11). Given that nothing is known
about the true distribution associated with the estimate
beyond the second central moment, it may seem that there is
no reason to prefer the symmetric 2V, set over the N, + 1
simplex set. However, consider the following cases for the
skew (third central moment) of the unknown distribution.

1) If the skew of the true distribution is zero, then the
symmetric set of 2/V,. sigma points will be more accu-
rate. This is because the odd moments of a symmetric
distribution are zero while the skew of a simplex set of
points is not generally zero.

2) If the skew of the true distribution is nonzero, then the
skew of the simplex set may fortuitously align with
that of the true distribution and, thus, be more accurate
than the symmetric set. On the other hand, the skew
of the simplex set may be in the opposite direction of
the true skew, thus causing it to produce much poorer
results.

From the above considerations, it is not possible to deter-
mine which of the two sigma sets will be more accurate on
average, but it is possible to conclude that the skewed set is
likely to produce the poorest results in the worst case. This
can be demonstrated by considering the effect of rotating a
sigma point set. When a rotation is applied, it affects the pat-
tern of higher order moments and, thus, can have a significant
impact on performance.

These effects can be illustrated with the polar-to-Cartesian
transformation which was first discussed in Section II-C.
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Fig. 5. The effect of rotation on the simplex sigma points. (a) Simplex sets after different rotations.
Three sets of simplex sigma points have been rotated by ¢ = 0° (solid), # = 120° (dot-dashed),
and 6 = 240° (dotted), respectively. The zeroth point is unaffected by the rotation and lies at (0,

1) in all cases. (b) The mean and covariance calculated by each set. The dashed plot is the true
transformed estimate obtained from Monte Carlo integration assuming a Gaussian prior. (a) Simplex

sets after different rotations. (b) Mean and covariance plots.

Suppose that a set of simplex sigma points have been selected
using W = 0. As explained in Appendix III, these points
lie in a triangle. If the rotation matrix R

cosf —sinf
R=|".
sinf  cosf
is applied to each point in the set, the result is equivalent to ro-
tating the triangle. This does not affect the first two moments,

but it does affect the third and higher moments. The impact
is shown in Fig. 5(a), which superimposes the plots of the
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sets of transformed sigma points (z(")) for three different ro-
tations. The impact of the rotations is illustrated in Fig. 5(b),
which shows that the mean does not vary but the covariance
can change significantly. This is partially explained by the
analysis in Appendix I, which shows that the covariance is
more sensitive to the higher order behavior of the series.
Thus, even without exact knowledge about the higher
terms in the series expansion for the true but unknown
distribution, it is still possible (and often necessary) to mini-
mize large-magnitude errors resulting from, e.g., significant
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but erroneous skew terms. If the first two moments are to
be preserved, one mechanism for partially parameterizing
the net effect of the higher moments is to reformulate the
problem so that it can be written in terms of a different
nonlinear transformation

z =hlp,,q, 4]
_ h[x + az] — h[x] +hi] (14)

where « is a scaling factor (which scales the “spread” of the
distribution) and x4 is a normalizing constant whose value
is determined below. The reason for considering this form
arises from its Taylor series expansion. From (3)

2D2h 3D2h
2:h[x]+gDeh+a— ol 4 2 e
I uwo 2! w3
a* Dih
— = +.-. (15)

In other words, the series resembles that for h[x] but the
kth term is scaled by o /u. If a has a sufficiently small
value, the higher order terms have a negligible impact.

Assuming that E[e] = 0 and setting 1 = «?, it can be
shown that [33]

Q

z ~ B[z] (16)
3. = o’E[(z - E[z])(z - E[z])"] 17)

where the results are approximate because the two are cor-
rect up to the second order. It should be noted that the
mean includes the second-order bias correction term and so
this procedure is not equivalent to using a central differ-
ence scheme to approximate Jacobians. (Rather than mod-
ifying the function itself, the same effect can be achieved
by applying a simple postprocessing step to the sigma point
selection algorithm [33]. This is discussed in detail in Ap-
pendix V).

One side effect of using the modified function is that it
eliminates all higher order terms in the Taylor series expan-
sion. The effects are shown in Fig. 6(a), and are very similar
to the use of a symmetric sigma set discussed above. When
higher order information is known about the distribution, it
can be incorporated to improve the estimate. In Appendix VI
we show that these terms can be accounted for by adding a
term of the form {y(®) — y}{y(® — 17 with a weight /3 to
the covariance term

y® =h [X(z‘)} (18)

y = Xp: W(’i)y(i) (19)
1=0

L [yo -y} {y® -5} (20)
1=0

rp-) [y -5} 5O -5} @

The value of (3 is a function of the kurtosis. For a Gaussian,
it is three, and the effects are shown in Fig. 6(b).

The previous two sections have considered how the UT
can be applied to “one shot” transformations. We now de-
scribe how the UT can be embedded in the KF’s recursive
prediction and update structure.

VI. APPLYING THE UT TO RECURSIVE ESTIMATION
A. Application to the Basic Filtering Steps

To recap the requirements described in Section II, the KF
consists of the following steps.

1) Predict the new state of the system f,, and its asso-
ciated covariance K,,. This prediction must take into
account the effects of process noise.

2) Predict the expected observation y,, and the innova-
tion covariance S,,. This prediction should include the
effects of observation noise.

3) Predict the cross covariance matrix K zy

These steps can be formulated by slightly restructuring
the state vector and the process and observation models. The
most general formulation augments the state vector with the
process and noise terms to give an augmented N, = N, +
N4 + N,-dimensional vector

¢ = d |. (22)

The process and observation models are rewritten as a func-
tion of x|,

Yn =28 [in: un] (23)

and the UT uses sigma points that are computed from!'?

II'TL
[l,a,n = 0Nd><1 and
0NU><1
K, 0 0
Kin=|0 24, 0 |. (24)
0 0 X,

Although this method requires the use of additional sigma
points, it incorporates the noises into the predicted state with

101f correlations exist among the noise terms, (24) can be generalized to
draw the sigma points from the covariance matrix

wd -
K, X° e
— d d
Kon= |20 X4, X7
va dv
En En EU-”

Such covariance structures commonly arise in algorithms such as the
Schmidt—Kalman filter [34])
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Fig. 6. The effect of the scaled UT on the mean and covariance. « = 1073, 3 = 2, and ¢ = 1076,
Note that the UT estimate (solid) is conservative with respect to the true transformed estimate
(dashed) assuming a Gaussian prior. (a) Without correction term. (b) With correction term.

the same level of accuracy as the propagated estimation er-
rors. In other words, the estimate is correct to the second
order and no derivatives are required.'!

The unscented filter is summarized in Fig. 7. However, re-
call that this is a very general formulation and many special-
ized optimizations can be made. For example, if the process

1]t should be noted that this form, in common with standard EKF prac-
tice, approximates the impact of the process noise. Technically, the process
noise is integrated through the discrete time interval. The approximation as-
sumes that the process noise is sampled at the beginning of the time step and
is held constant through the time step. Drawing parallels with the derivation
of the continuous time filter from the discrete time filter, the dimensions of
the process noise are correct if X4, is actually scaled by 1/¢.
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model is linear, but the observation model is not, the normal
linear KF prediction equations can be used to calculate f,,
and K,,. The sigma points would be determined from the
prediAcgi;)n distribution and would only be used to calculate
Yn, K, ,and S,.

We now illustrate the use of the unscented KF in a stressing
nonlinear application.

B. Example

Consider the problem that is illustrated in Fig. 8. A ve-
hicle enters the atmosphere at high altitude and at a very
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1) The set of sigma points is created by applying a sigma point selection algorithm (e.g., (12) to the augmented system

given by (24).

2) The transformed set is given by instantiating each point through the process model

*(1) =

3) The predicted mean is computed as

x@) un}

an’

Y4
ﬂam = Z W(t)ﬁt(:,?n.'

4) And the predicted covariance is computed as

I

5) Instantiate each of the prediction points through the observation model,

¥§ =

6) The predicted observation is calculated by

t(l)n,v un] .

P
I = WOFD.
=0

7) The innovation covariance is

=

Z W@ { (0 _

=0

8) The cross covariance matrix is determined by

o) {505}

i ZW { '—Iln}{ﬁ,(f)—ﬂn}T.

9) Finally, the update can be performed using the normal Kalman filter equations:

P = fly + Wyuy

K'n = Kn - WnS'nW;I;
S’n
A TY a—1
Wn - Kn Sn .

Fig. 7. General formulation of the KF using the UT.

high speed. The position of the body is tracked by a radar
which measures range and bearing. This type of problem
has been identified by a number of authors [1], [9]-[11] as
being particularly stressful for filters and trackers because
of the strong nonlinearities exhibited by the forces which
act on the vehicle. There are three types of forces in effect.
The most dominant is aerodynamic drag, which is a func-
tion of vehicle speed and has a substantial nonlinear varia-
tion in altitude. The second type of force is gravity, which
accelerates the vehicle toward the center of the earth. The
final forces are random buffeting terms. The effect of these
forces gives a trajectory of the form shown in Fig. 8: initially,
the trajectory is almost ballistic; but as the density of the
atmosphere increases, drag effects become important and the
vehicle rapidly decelerates until its motion is almost vertical.
The tracking problem is made more difficult by the fact that
the drag properties of the vehicle might be only very crudely
known.

In summary, the tracking system should be able to track an
object that experiences a set of complicated, highly nonlinear
forces. These depend on the current position and velocity of
the vehicle as well as on certain characteristics which are
not known precisely. The filter’s state space consists of the

position of the body (x; and x5), its velocity (x5 and z4) and
a parameter of its aerodynamic properties (z5). The vehicle
state dynamics are

i1(k) = w3(k)

o (k) = z4(k)

3(k) = D(k)zs(k) + G(k)z1(k) + v1 (k)

Fa(k) = D(k)za(k) + G(k)za (k) + vo(k)

5 (k) = v (k) 25)

where D(k) is the drag-related force term, G(k) is the
gravity-related force term, and v.(k) is the process noise
vector. The force terms are given by

D(k) = =k exp{ 0 EE v

- Gmo
G) = a8
and
B(k) = Po exp z5(k)
where R(k) V2(k) + z%(k) (the distance from the

center of the earth) and V (k) = \/23(k) + 23(k) (speed).
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Fig. 8. The reentry problem. The dashed line is the sample vehicle trajectory and the solid line is a

portion of the earth’s surface. The position of the radar is marked by a o.

In this example 5y = —0.59783, Hy = 13.406,Gmgy =
3.9860 x 10°, and Ry = 6374 and reflect typical environ-
mental and vehicle characteristics [10]. The parameterization
of the ballistic coefficient G(k) reflects the uncertainty in
vehicle characteristics [1]. [y is the ballistic coefficient
of a “typical vehicle” and it is scaled by exp (z5(k)) to
ensure that its value is always positive. This is vital for filter
stability.

The motion of the vehicle is measured by a radar that is
located at (z,, y,-). It is able to measure range r and bearing
6 at a frequency of 10 Hz, where

re(k) = V/(@1(k) = 2,)2 + (22(k) — yr)? + wi (k)

o(k) = tan~" <%) +ws(k)

wi (k) and wy(k) are zero-mean uncorrelated noise pro-
cesses with variances of 1 m and 17 mrd, respectively [35].
The high update rate and extreme accuracy of the sensor
means that a large quantity of extremely high quality data is
available for the filter. The bearing uncertainty is sufficiently
small that the EKF is able to predict the sensor readings
accurately with very little bias.
The true initial conditions for the vehicle are

6500.4
349.14
x(0) = | —1.8093
—6.7967
0.6932
r1io=¢ o 0 0 0
0 108 o0 0 0
PO)=1] 0 0 10°% o0 o0
0 0 0 1079 0
L 0 0 0 0 0
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In other words, the vehicle’s ballistic coefficient is twice the
nominal value.
The vehicle is buffeted by random accelerations

2.4064 x 107° 0 0
Q(k) = 0 2.4064 x 107> 0
0 0 0

The initial conditions assumed by the filter are

6500.4
349.14
o = | —1.8093
—6.7967
0
r10=¢ o 0 0 0
0 107% 0 0 0
Ko=| 0 0 10°% o0 o0
0 0 0 1076 0
L 0 0 0 0 1

The filter uses the nominal initial condition and, to offset for
the uncertainty, the variance on this initial estimate is one.
Both filters were implemented in discrete time, and obser-
vations were taken at a frequency of 10 Hz. However, due to
the intense nonlinearities of the vehicle dynamics equations,
the Euler approximation of (25) was only valid for small time
steps. The integration step was set to be 50 ms, which meant
that two predictions were made per update. For the unscented
filter, each sigma point was applied through the dynamics
equations twice. For the EKF, it was necessary to perform an
initial prediction step and relinearize before the second step.
The performance of each filter is shown in Fig. 9. This
figure plots the estimated mean-squared estimation error (the
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Fig. 9. Mean-squared errors and estimated covariances calculated by an EKF and an unscented
Filter. In all the graphs, the solid line is the mean-squared error calculated by the EKF, and the
dotted line is its estimated covariance. The dashed line is the unscented mean-squared error and the
dot-dashed line its estimated covariance. (a) Results for x;. (b) Results for 3. (c) Results for 5.

diagonal elements of K,,) against actual mean-squared es-
timation error (which is evaluated using 100 Monte Carlo
simulations). Only z1, x3, and x5 are shown—the results for
x5 are similar to x1, and x4 is the same as that for x3. In
all cases it can be seen that the unscented filter estimates
its mean-squared error very accurately, and it is possible to
have confidence in the filter estimates. The EKF, however,
is highly inconsistent: the peak mean-squared error in z; is
0.4 km2, whereas its estimated covariance is over 100 times
smaller. Similarly, the peak mean-squared velocity error is
34 %1074 kmZs~2, which is over five times the true mean-
squared error. Finally, it can be seen that x5 for the EKF is
highly biased, and this bias only slowly decreases over time.
This poor performance is the direct result of linearization
errors.

This section has illustrated the use of the UT in a KF for a
nonlinear tracking problem. However, the UT has the poten-
tial to be used in other types of transformations as well.
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VII. FURTHER APPLICATIONS OF THE UT

The previous section illustrated how the UT can be used
to estimate the mean and covariance of a continuous non-
linear transformation more precisely. However, the UT is not
limited to continuous distributions with well-defined Taylor
series expansions.

A. Discontinuous Transformation

Consider the behavior of a two-dimensional (2-D) particle
whose state consists of its position x(k) = [z(k),y(k)]T.
The projectile is initially released at time 1 and travels at a
constant and known speed v, in the z direction. The objec-
tive is to estimate the mean position and covariance of the
position at time 2 [z:(2),y(2)]T where AT 2 ty — t1. The
problem is made difficult by the fact that the path of the pro-
jectile is obstructed by a wall that lies in the “bottom right
quarter-plane” (z > 0,y < 0). If the projectile hits the wall,
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Fig. 10. Discontinuous system example: a particle can either
strike a wall and rebound or continue to move in a straight line. The
experimental results show the effect of using different start values
for y. (a) Problem scenario. (b) Mean-squared prediction error
against initial value of y. Solid is UF, dashed is EKF.

there is a perfectly elastic collision and the projectile is re-
flected back at the same velocity as it traveled forward. This
situation is illustrated in Fig. 10(a), which also shows the 1o
covariance ellipse of the initial distribution.

The process model for this system is

y(1) >0 26)

z(1) + ATv,,
z(2) = { _((g;)(l) + ATw,)

y(2) = y(1). (27)

At time step 1, the particle starts in the left half-plane (2 <
0) with position [z(1),y(1)]T. The error in this estimate is
Gaussian, has zero mean, and has covariance K. Linearized
about this start condition, the system appears to be a simple
constant velocity linear model.

The true conditional mean and covariance was deter-
mined using Monte Carlo simulation for different choices
of the initial mean of y. The mean-squared error calculated
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by the EKF and by the UT for different values is shown
in Fig. 10(b). The UT estimates the mean very closely,
suffering only small spikes as the translated sigma points
successively pass the wall. Further analysis shows that
the covariance for the filter is only slightly larger than the
true covariance, but conservative enough to account for the
deviation of its estimated mean from the true mean. The
EKF, however, bases its entire estimate of the conditional
mean on the projection of the prior mean, so its estimates
bear no resemblance to the true mean, except when most of
the distribution either hits or misses the wall and the effect
of the discontinuity is negligible.

B. Multilevel Sensor Fusion

The UT can also be used to bridge the gap between
low-level filters based on the KF and high-level systems
based on artificial intelligence or related mechanisms. The
basic problem associated with multilevel data fusion is
that different levels are typically concerned with different
pieces of information represented in very different ways. For
example, a low-level filter may maintain information about
states relating to, e.g., wheel slip of a vehicle, that are only
of indirect relevance to a high-level guidance system that
maintains information relating to, e.g., whether the vehicle
is veering toward the edge of the roadway. The multilevel
data fusion problem has been decomposed into a set of
hierarchical domains [36]. The lowest levels, Level 0 and
Level 1 (object refinement), are concerned with quantitative
data fusion problems such as the calculation of a target
track. Level 2 (situation refinement) and Level 3 (threat
refinement) apply various high-level data fusion and pattern
recognition algorithms to attempt to glean strategic and
tactical information from these tracks.

The difficulty lies in the fundamental differences in the
representation and use of information. On the one hand, the
low-level tracking filter only provides mean and covariance
information. It does not specify an exact kinematic state
from which an expert system could attempt to infer a tactical
state (e.g., relating to “intents” or “goals”). On the other
hand, an expert system may be able to accurately predict the
behavior of a pilot under a range of situations. However, the
system does not define a rigorous low-level framework for
fusing its predictions with raw sensor information to obtain
high-precision estimates suitable for reliable tracking. The
practical solution to this problem has been to take the output
of standard control and estimation routines, discretize them
into a more symbolic form (e.g., “slow” or “fast”), and
process them with an expert/fuzzy rule base. The results of
such processing are then converted into forms that can be
processed by conventional process technology.

One approach for resolving this problem, illustrated in
Fig. 11, is to combine the different data fusion algorithms
together into a single, composite data fusion algorithm
that takes noise-corrupted raw sensor data and provides the
inferred high level state. From the perspective of the track
estimator, the higher level fusion rules are considered to be
arbitrary, nonlinear transformations. From the perspective
of the higher level data fusion algorithms, the UT converts
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Fig. 11. Possible framework for multilevel information fusion using the UT.

the output from the low-level tracker into a set of vectors.
Each vector is treated as a possible kinematic state which
is processed by the higher level fusion algorithms. In other
words, the low-level tracking algorithms do not need to
understand the concept of higher level constructs, such as
maneuvers, whereas the higher level algorithms do not need
to understand or produce probabilistic information.

Consider the problem of tracking an aircraft. The aircraft
model consists of two components—a kinematic model,
which describes the trajectory of the aircraft for a given set
of pilot inputs, and an expert system, which attempts to infer
current pilot intentions and predict future pilot inputs. The
location of the aircraft is measured using a radar tracking
system.

Some sigma points might imply that the aircraft is making
arapid acceleration, some might indicate a moderate acceler-
ation, and yet others might imply that there is no discernible
acceleration. Each of the state vectors produced from the UT
can be processed individually by the expert system to predict
a possible future state of the aircraft. For some of the state
vectors, the expert system will signal an evasive maneuver
and predict the future position of the aircraft accordingly.
Other vectors, however, will not signal a change of tactical
state and the expert system will predict that the aircraft will
maintain its current speed and bearing. The second step of the
UT consists of computing the mean and covariance of the set
of predicted state vectors from the expert system. This mean
and covariance gives the predicted state of the aircraft in a
form that can then be fed back to the low-level filter. The im-
portant observation to be made is that this mean and covari-
ance reflects the probability that the aircraft will maneuver
even though the expert system did not produce any proba-
bilistic information and the low-level filter knows nothing
about maneuvers.

|

(Mean and covariance output of the
system for use by, e.g., a guidance
system or precision weapon)

VIII. SUMMARY AND CONCLUSION

In this paper we have presented and discussed the UT.
We explored how it can be used to transform statistical in-
formation through a nonlinear transformation. Although it
has some similarity to particle filters, there are two impor-
tant distinctions. First, the sigma points are chosen determin-
istically from the statistics of the transformation; therefore,
second-order properties of the distribution can be propagated
with only a small amount of statistical information. Second,
the approximation itself can be interpreted more generally
than as a probability distribution, and we have shown how
this generality can be exploited.

The UT method has found a number of applications in
high-order, nonlinear coupled systems including navigation
systems for high-speed road vehicles [37], [38], public trans-
portation systems [39], data assimilation systems [40], and
underwater vehicles [41]. Square root filters can be formu-
lated in terms of discrete sets of points (as demonstrated in
[42]), and iterated filters can be constructed using the predic-
tions [43]. The algorithm has been extended to capture the
first four moments of a Gaussian distribution [44] and the
first three moments of an arbitrary distribution [45].

More recently, other authors have explored extensions
and refinements to the basic algorithm and concepts. Van
Der Merwe [46] has developed a square root formulation of
the UT which propagates the mean and square root of the
covariance matrix, rather than the covariance matrix itself.
Van Der Merwe has extended the concept of sigma point
filters to work with particle filters and sums of Gaussians
[47].

Although this paper has considered many aspects of the
various ways in which the UT can be tailored to address the
subtleties of particular applications or performance concerns,
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it is important to recognize that the basic UT algorithm is
conceptually very simple and easy to apply. In this respect
the UT has the same appeal as linearization for the EKF,
but unlike linearization the UT provides sufficient accuracy
to be applied in many highly nonlinear filtering and control
applications.

APPENDIX 1
TAYLOR SERIES AND MOMENTS

This Appendix analyzes the performance of the prediction
with respect to the Taylor series expansion and moments. Z
is the expected value of (3)

z = E[h[x + €]]
. D2h D3h Dih
=hix+E {Deth ST TR TR IS
where the ith term in the series is given by
o[
7!
1 —~_ 0 -
7j=1
1 d'h do'h
== — —t-- 29
f <m1"'1181;11+m1'"128w1118w2+ > (29)

and mc,., ., 1s the ith-order moment mc,c, ., =
Elec, €c, - - - €c,]. Therefore, if the mean is to be correctly
calculated to the mth order, both the derivatives of h[ -] and
the moments of e must be known up to the mth order.

The covariance X, is given by

Y. =E[{z—-z}{z — Z}T].
Substituting from (3) and (28)
z—7 =h[x + e] — E[h[X + €]
D2h D2h Dih

=Deh+ 5=+ -+

D2h  Dih
_ E [ e e

o T

Taking outer products and expectations and exploiting the
fact that e is symmetric, the odd terms all evaluate to zero
and the covariance is given by

2. =AX)E.AT(x)

D.h (D3h)"  D2h (D2h)"
3! 2 x 2!
Dgh(Deh)T]
+ - =~ - 7
3!
2 21,17
—E[D;h}E[DSh} 4o (30)

where E[D.h(Doh)?] = A(x)X, AT (x) has been used.

In other words, the mth-order term in the covariance series
is calculated correctly only if h[ -] and the moments of e are
known up to the 2mth order.

418

Comparing this with (28), it can be seen that if the mo-
ments and derivatives are known to a given order, the order
of accuracy of the mean estimate is higher than that of the
covariance.

APPENDIX II
MOMENT CHARACTERISTICS OF THE SYMMETRIC SIGMA
POINT SETS

This Appendix analyzes the properties of the higher mo-
ments of the symmetric sigma point sets. This Appendix
analyzes the set given in (12). The set presented in (11) cor-
responds to the special case W) = 0.

Without loss of generality, assume that the prior distribu-
tion has a mean 0 and covariance I. An affine transformation
can be applied to rescale and translate this set to an arbitrary
mean and covariance. Using these statistics, the points se-
lected by (12) are symmetrically distributed about the origin
and lie on the coordinate axes of the state space. Let mc, ¢, ¢,
be the ith-order moment

mclcg...ck = E [J:cGCQ - chk]

p
=> wWhg®yl) a0 (31)
=0

where xﬁ? is the c;th component of the ith sigma point.
From the orthogonality and symmetry of the points, it can

be shown that only the even-ordered moments where all in-

dices are the same (¢; = ¢ = --- = ¢},) are nonzero. Fur-

thermore, each moment has the same value given by

= VAN
Mecr = 3 WO (2) (32)
=0
1— W(O) Nq: k/2
- (1 - W(0)> (33)

Consider the case when the sigma points approximate a
Gaussian distribution. From the properties of a Gaussian it
can be shown that [22]

Efa5" x - x 2] = [ E [2:*]
=1

where the moment contains «; repetitions of each element.
(For example, the moment 111 223333 has a1 = 2,y =
2, a3 = 4). For each element

. 0, a; is odd
7% ’ v
E[xl]_{1X3XX(aL_1) aiiseven'

Comparing this moment scaling with that from the sym-
metric sigma point set, two differences become apparent.
First, the “scaling” of the points are different. The moments
of a Gaussian increase factorially whereas the moments of
the sigma point set increases geometrically. Second, the
sigma point moment set “misses out” many of the moment
terms. For example, the Gaussian moment E[zf23] = 1
whereas the sigma point set moment is E[z323] = 0. These
differences become more marked as the order increases.

?
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However, these effects are mitigated by the fact that the
terms in the Taylor series have inverse factorial weights.

Assuming that the contributions of terms diminish as the
order increases, the emphasis should be to minimize the error
in the lowest order in the series. The first errors occur in the
fourth order. For a Gaussian distribution, E[z}] = 3. The
symmetric sigma point set can achieve the same value with
W =1-N,/3.

Because the fourth and higher order moments are not pre-
cisely matched, the choice of matrix square root affects the
errors in the higher order terms by adjusting the way in which
the errors are distributed amongst the different states. This
issue is discussed in more detail in Appendix V.

APPENDIX III
SIMPLEX SIGMA POINT SETS

The computational costs of the UT are proportional to the
number of sigma points. Therefore, there is a strong incentive
to reduce the number of points used. This demand come from
both small-scale applications such as head tracking, where
the state dimension is small but real time behavior is vital,
to large-scale problems, such as weather forecasting, where
there can be many thousands or tens of thousands of states
[48].

The minimum number of sigma points are the smallest
number required which have mean and covariance X and 3.
From the properties of the outer products of vectors

min(p + 1, N,,)
Zp @ (@ _ ) (x0 _ = T]
> rank |J:0 W (x x) (x x) .

Therefore, at least IV, + 1 points are required. This result
makes intuitive sense. In two dimensions, any two points are
colinear and so their variance cannot exceed rank 1. If a third
point is added (forming a triangle), the variance can equal 2.
Generalizing, a N,-dimensional space can be matched using
a simplex of N, + 1 vertices.

Although any N, points are sufficient, additional con-
straints must be supplied to determine which points should
be used. In [49] we chose a set of points that minimize the
skew (or third-order moments) of the distribution. Recently,
we have investigated another set that places all of the sigma
points at the same distance from the origin [50]. This choice
is motivated by numerical and approximation stability
considerations. This spherical simplex sigma set of points
consists of points that lie on a hypersphere.

The basic algorithm is as follows.

1) Choose 0 < Wy < 1.

2) Choose weight sequence

W@ = (1 - Wo)/(N, +1).
3) Initialize vector sequence as

X1 = [0]

5((1)1:[_ ! }
2W,

{0,s),w)}

’J {(5,8,),w,}
X/

{(s,0).w}

‘\

{(0,0),w, }

Fig. 12. Fourth-order sigma points.

and
1 = [ ! } :
2W,
4) Expand vector sequence for j = 2, ..., N, according
to
([x©5 -1 :
0 , for: =0
| x0j -1 _ .
x(1) = _ 1 ,  fori=1,...,j
L ViG+)m
0;
7 , fori =754 1.
L | ViG+Dwa

This algorithm has two notable two features. First, the
weight on each sigma point (apart from the zeroth point) is
the same and is proportional to (1 — Wp)/(N, +1). Second,
all of the sigma points (apart from the zeroth point) lie on the
hypersphere of radius /N, /(1 — Wy).

APPENDIX IV
CAPTURING THE KURTOSIS

This Appendix shows how a sigma point set can be chosen
which matches the first four moments of a Gaussian distri-
bution. It was originally presented in [51].

If the sigma points are to capture the kurtosis of a Gaussian
distribution precisely, they must have the property that

17
Meycacges = {37
0,

(34)

Since there are O(N2) constraints, O(NN2) sigma points
are required. Guided by the structure of the second-order so-
lution, we introduce the minimum number of extra points
which retain the symmetry of the distribution. Fig. 12 shows
the sigma points in one quadrant for a 2-D case. Three types
of points are used. The first type consists of a single point
which lies at the origin with weight wg. The second type
of point lies on the coordinate axes a distance s; from the
origin and with weight w;. There are four occurrences of
the third type of point. These lie at (+s2,+52) and are as-
signed a weight ws. The form of the distribution general-
izes in higher dimensions. In three dimensions, there are six
type 2 points and 12 type 3 points. The type 3 points lie at
(£s2,£2,0),(Es2,0,+52), and (0, £s2, +s5). Extending

when ¢; = ¢a,¢c3 = ¢4 and c¢1 # c3
when Cl =Cy =C3 =C4
otherwise
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Table 1

Points and Weights for n = 3 Dimensions for the Fourth-Order UT
S5 W,,,
0 0.3583

3.2530 | 0.0045
1.4862 | 0.0512

N —~| of .

this example to a higher number of dimensions, it can be
shown that 2N 2+1 points are required. As a result, the comp-
tutational costs are O(N:), which is the same order as that
required for analytically derived fourth-order filters.

The constraints placed on the points are for the covariance,
kurtosis, and normalization. The symmetry means that these
conditions need only be ensured in the z; and zo directions

2wy 52 + 4(N, — 1)was3 — 1
2w 5 + 4(Np — V)wass — 3
dwos3 — 1
wo + 2N, wy + 2n(N, — Dwy — 1

The solutions to these equations possess a single degree of
freedom. However, unlike the second-order transform, there
does not appear to be a convenient set of parameters which
can be used to capture this freedom. Even so, it is possible
to apply a disutility function which adjust the properties of
the desired distribution. Extending from the results for the
second-order filter, we choose a disutility function which
minimizes the discrepancy of the sixth-order moments. Since
mi11111 = 15, the cost function is

glS,p-(z)] =

c[S,p:(2)] = |2wys] + 4(n — 1)wysy — 15| .

The values of wg, wy, w2, s1, and so are given in Table 1
for the case when n = 3. A total of 19 sigma points are
required.

A more formal derivation and generalization of this ap-
proach was carried out by Lerner [31]

APPENDIX V
SCALED SIGMA POINTS

This Appendix describes an alternative method of scaling
the sigma points which is equivalent to the approach de-
scribed in Section V. That section described how a modi-
fied form of the nonlinear transformation could be used to
influence the effects of the higher order moments. In this
Appendix, we show that the same effect can be achieved by
modifying the sigma point set rather than the transformation.

Suppose a set of sigma points S have been constructed
with mean X and covariance X.

From (15), the mean is

p
z=>» WOh[x")]
1=0
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The same mean can be calculated by applying a different
sigma pointset S = {i = 0,...,p : XD, W@} toh[-]. S
and S are related according to the expression

% = ax® 4 (1 - a)x©

o f WO +p=1)/p i=0
WO/ P40

Given this set of points, the scaled UT calculates its statis-
tics as follows:

5 —p [;gz‘)}

+(1-a?) {z@) - z} {z@) - z}T. (35)

APPENDIX VI
INCORPORATING COVARIANCE CORRECTION TERMS

Although the sigma points only capture the first two mo-
ments of the sigma points (and so the first two moments of the
Taylor series expansion), the scaled UT can be extended to
include partial higher order information of the fourth-order
term in the Taylor series expansion of the covariance [52].
The fourth-order term of (30) is

A= iDgh (E[e!] - E[e*%,] — E[Z,e?] + 32) (D2h)”
+%D§hE[e4](Deh)T. (36)

The term (1/2)DZhX?(DZ2h)” can be calculated from
the same set of sigma points which match the mean and co-
variance. From (3) and (28)

1 1
20—z = nghEx + 6Dih E[e®] +---.
Taking outer products
T
(z - z<0>) (z - z<0>) - iDihEi (D2h)" +..-.

Therefore, adding extra weighting to the contribution of
the zeroth point, further higher order effects can be incorpo-
rated at no additional computational cost by rewriting (35) as

N0 [0 _ 5 [0 _ g\
DI ;W {z z} {z z}
+(B+1-0a?) {Z(O) — Z} {Z(o) - Z}T )

In this form, the error in the fourth-order term is
AA = iDzh (E[e*] — E[e*%,]
~ E[S,e’] + (1 - §)52) (D2h)"
+ %DihE[e‘*](Deh)T.
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In the special case that ;1 Gaussian-distributed, E[e*] =
3X2 and so the error is

AA = (2- 9)DS? (D2h)”

+%D2hE[e4](Deh)T. (37)

Under the assumption that no information about h[-] is

used, this term is minimized when 3 = 2.
REFERENCES
[1] P. J. Costa, “Adaptive model architecture and extended Kalman—

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]

JULIER AND UHLMANN: UNSCENTED FILTERING AND NONLINEAR ESTIMATION

Bucy filters,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, pp.
525-533, Apr. 1994.

G. Prasad, G. W. Irwin, E. Swidenbank, and B. W. Hogg, “Plant-wide
predictive control for a thermal power plant based on a physical plant
model,” in IEE Proc.—Control Theory Appl., vol. 147, Sept. 2000,
pp- 523-537.

H. J. Kushner, “Dynamical equations for optimum nonlinear
filtering,” J. Different. Equat., vol. 3, pp. 179-190, 1967.

D. B. Reid, “An algorithm for tracking multiple targets,” IEEE
Trans. Automat. Contr., vol. 24, pp. 843-854, Dec. 1979.

D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation
using Gaussian sum approximations,” IEEE Trans. Automat. Contr.,
vol. AC-17, pp. 439-447, Aug. 1972.

K. Murphy and S. Russell, “Rao—Blackwellised particle filters for
dynamic Bayesian networks,” in Sequential Monte Carlo Estimation
in Practice. ser. Statistics for Engineering and Information Science,
A.Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-
Verlag, 2000, ch. 24, pp. 499-515.

A. H. Jazwinski, Stochastic Processes and Filtering Theory. San
Diego, CA: Academic, 1970.

H. W. Sorenson, Ed., Kalman Filtering: Theory and Application.
Piscataway, NJ: IEEE, 1985.

M. Athans, R. P. Wishner, and A. Bertolini, “Suboptimal state
estimation for continuous-time nonlinear systems from discrete
noisy measurements,” [EEE Trans. Automat. Contr., vol. AC-13,
pp. 504-518, Oct. 1968.

J. W. Austin and C. T. Leondes, “Statistically linearized estimation
of reentry trajectories,” IEEE Trans. Aerosp. Electron. Syst., vol.
AES-17, pp. 54-61, Jan. 1981.

R. K. Mehra, “A comparison of several nonlinear filters for reentry
vehicle tracking,” IEEE Trans. Automat. Contr., vol. AC-16, pp.
307-319, Aug. 1971.

D. Lerro and Y. K. Bar-Shalom, “Tracking with debiased consistent
converted measurements vs. EKFE,” IEEE Trans. Aerosp. Electron.
Syst., vol. AES-29, pp. 1015-1022, July 1993.

T. Viéville and P. Sander, “Using pseudo Kalman-filters in the pres-
ence of constraints application to sensing behaviors,” INRIA, Sophia
Antipolis, France, Tech. Rep. 1669, 1992.

J. K. Tugnait, “Detection and estimation for abruptly changing sys-
tems,” Automatica, vol. 18, no. 5, pp. 607-615, May 1982.

K. Kastella, M. A. Kouritzin, and A. Zatezalo, “A nonlinear filter for
altitude tracking,” in Proc. Air Traffic Control Assoc., 1996, pp. 1-5.
R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

J. K. Kuchar and L. C. Yang, “Survey of conflict detection and res-
olution modeling methods,” presented at the AIAA Guidance, Nav-
igation, and Control Conf., New Orleans, LA, 1997.

P. A. Dulimov, “Estimation of ground parameters for the control of
a wheeled vehicle,” M.S. thesis, Univ. Sydney, Sydney, NSW, Aus-
tralia, 1997.

R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME J. Basic Eng., vol. 82, pp. 34-45, Mar.
1960.

Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Associa-
tion. New York: Academic, 1988.

J. Leonard and H. F. Durrant-Whyte, Directed Sonar Sensing for
Mobile Robot Navigation. Boston, MA: Kluwer, 1991.

P. S. Maybeck, Stochastic Models, Estimation, and Control.
York: Academic, 1979, vol. 1.

L. Mo, X. Song, Y. Zhou, Z. Sun, and Y. Bar-Shalom, “Unbiased
converted measurements in tracking,” IEEE Trans. Aerosp. Electron.
Syst., vol. 34, pp. 1023-1027, July 1998.

New

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
(33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50

J. K. Uhlmann, “Simultaneous map building and localization for
real time applications,” transfer thesis, Univ. Oxford, Oxford, U.K.,
1994.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 1992.

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration.
San Diego, CA: Academic, 1975.

T. Lefebvre, H. Bruyninckx, and J. De Schuller, “Comment on ‘A
new method for the nonlinear transformation of means and covari-
ances in filters and estimators [and author’s reply]’,” IEEE Trans.
Automat. Contr., vol. 47, pp. 1406-1409, Aug. 2002.

J. Holtzmann, “On using perturbation analysis to do sensitivity anal-
ysis: Derivaties vs. differences,” in IEEE Conf. Decision and Con-
trol, 1989, pp. 2018-2023.

M. Ngrgaard, N. K. Poulsen, and O. Ravn, “New developments in
state estimation for nonlinear systems,” Automatica, vol. 36, no. 11,
pp. 1627-1638, Nov. 2000.

H. J. Kushner, “Approximations to optimal nonlinear filters,” IEEE
Trans. Automat. Contr., vol. AC-12, pp. 546-556, Oct. 1967.

U. N. Lerner, “Hybrid Bayesian networks for reasoning about
complex systems,” Ph.D. dissertation, Stanford Univ., Stanford,
CA, 2002.

D. Tenne and T. Singh, “The higher order unscented filter,” in Proc.
Amer. Control Conf., vol. 3, 2003, pp. 2441-2446.

S. J. Julier and J. K. Uhlmann, “The scaled unscented transforma-
tion,” in Proc. Amer. Control Conf., 2002, pp. 4555-4559.

S. F. Schmidt, “Applications of state space methods to navigation
problems,” in Advanced Control Systems, C. T. Leondes, Ed. New
York: Academic, 1966, vol. 3, pp. 293-340.

C. B. Chang, R. H. Whiting, and M. Athans, “On the state and pa-
rameter estimation for maneuvering reentry vehicles,” IEEE Trans.
Automat. Contr., vol. AC-22, pp. 99-105, Feb. 1977.

L. Klein, Sensor and Data Fusion Concepts and Applications, 2nd
ed. Bellingham, WA: SPIE, 1965.

S. J. Julier, “Comprehensive process models for high-speed naviga-
tion,” Ph.D. dissertation, Univ. Oxford, Oxford, U.K., Oct. 1997.

S. Clark, “Autonomous land vehicle navigation using millimeter
wave radar,” Ph.D. dissertation, Univ. Sydney, Sydney, NSW,
Australia, 1999.

A. Montobbio, “Sperimentazione ed affinamento di un localizza-
tore,” B.S. thesis, Politecnico di Torino, Torino, Italy, 1998.

X. Wang, C. H. Bishop, and S. J. Julier, “What’s better, an ensemble
of positive/negative pairs or a centered simplex ensemble?,” pre-
sented at the EGS-AGU-EUG Meeting, Nice, France, 2003.

R. Smith, “Navigation of an underwater remote operated vehicle,”
Univ. Oxford, Oxford, U.K., 1995.

T. S. Schei, “A finite difference approach to linearization in non-
linear estimation algorithms,” in Proc. Amer. Control Conf., vol. 1,
1995, pp. 114-118.

R. L. Bellaire, E. W. Kamen, and S. M. Zabin, “A new nonlinear iter-
ated filter with applications to target tracking,” in Proc. AeroSense:
8th Int. Symp. Aerospace/Defense Sensing, Simulation and Controls,
vol. 2561, 1995, pp. 240-251.

S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman
filter to nonlinear systems,” in Proc. AeroSense: 11th Int. Symp.
Aerospace/Defense Sensing, Simulation and Controls, 1997, pp.
182-193.

S. J. Julier, “A skewed approach to filtering,” in Proc. AeroSense:
12th Int. Symp. Aerospace/Defense Sensing, Simulation and Con-
trols, vol. 3373, Apr. 1998, pp. 54-65.

R. Merwe and E. Wan, “The square-root unscented Kalman filter
for state and parameter-estimation,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, 2001,
pp. 3461-3464.

—, “Gaussian mixture sigma-point particle filters for sequential
probabilistic inference in dynamic state-space models,” in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP),
vol. 6, 2003, pp. VI-701-VI-704.

R. Todling and S. E. Cohn, “Suboptimal schemes for atmospheric
data assimilation based on the Kalman filter,” Montly Weather Rev.,
vol. 122, pp. 2530-2557, Nov. 1994.

S. J. Julier and J. K. Uhlmann, “Reduced sigma point filters for the
propagation of means and covariances through nonlinear transfor-
mations,” in Proc. Amer. Control Conf., 2002, pp. 887-892.

S. Julier, “The spherical simplex unscented transformation,” in The
Proc. Amer. Control Conf., vol. 3, 2003, pp. 2430-2434.

421



[51] S.J. Julier and J. K. Uhlmann, “A consistent, debiased method for
converting between polar and Cartesian coordinate systems,” in The
Proc. AeroSense: Acquisition, Tracking and Pointing XI, vol. 3086,
1997, pp. 110-121.

[52] J. K. Uhlmann. (1995) A real time algorithm for simultaneous map
building and localization.

Simon J. Julier (Member, IEEE) received
the M.Eng. degree (first-class honors) in engi-
neering, economics, and management and the
D.Phil. degree in robotics from the University
of Oxford, Oxford, UK., in 1993 and 1997,
respectively.

His principal research interests include
distributed data fusion, vehicle localization
and tracking, and user interfaces for mobile
augmented reality systems.

422

Jeffrey K. Uhlmann (Member, IEEE) received
the B.A. degree in philosophy and the M.Sc.
degree in computer science from the University
of Missouri—Columbia, Columbia, in 1986 and
1987, respectively, and the doctorate degree in
robotics from Oxford University, Oxford, U.K.,
in 1995.
From 1987 to 2000, he was with the Naval Re-
search Laboratory, Washington, DC, working in
7 the areas of control, tracking, and virtual reality.
He was aleading researcher in the development of
multiple-target tracking systems for the Strategic Defense Initiative (SDI).
He is currently on the faculty of the Department of Computer Science, Uni-
versity of Missouri, Columbia. His current research interests include data
fusion, entertainment engineering, spatial data structures, and graphical ren-
dering and processing.
Prof. Uhlmann has received over a dozen invention and publication
awards from the U.S. Navy.

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 3, MARCH 2004



