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Abstract

This paper describes how to propagate approxi-
mately additive random perturbations through any
kind of vision algorithm step in which the appropriate
random perturbation model for the estimated quantity
produced by the vision step is also an additive random
perturbation. We assume that the vision algorithm
step can be modeled as a calculation (linear or non-
linear) that produces an estimate that minimizes an
implicit scaler function of the input quantity and the
calculated estimate. The only assumption is that the
scaler function have finite second partial derivatives
and that the random perturbations are small enough
so that the relationship between the scaler function
evaluated at the ideal but unknown input and out-
put quantities and the observed input quantity and
perturbed output quantity can be approximated suf-
ficiently well by a first order Taylor series expansion.

The paper finally discusses the issues of verifying
that the derived statistical behavior agrees with the
experimentally observed statistical behavior.

1 Introduction

Each real computer vision problem begins with
one or more noisy images and has many algorithmic
steps. Development of the best algorithm requires un-
derstanding how the uncertainty due to the random
perturbation affecting the input image(s) propagates
through the different algorithmic steps and results in
a perturbation on whatever quantities are finally com-
puted. Perhaps a more accurate statement would be
that the quantities finally computed must really be
considered to be estimated quantities.

Once we have the perspective that what we com-
pute are estimates, then it becomes clear that even
though the different ways of estimating the same quan-
tity typically yield the same result if the input quan-
tities are not affected by a random perturbation, it is
certainly not the case that the different ways of esti-
mating the same quantities yield an estimate with the
same distribution when the input is perturbed by a
random perturbation. It is clearly the case that the
distribution of the estimate depends on the distribu-
tion of the input random perturbation and the method
or type of estimate.

With this in mind, it is then important to un-
derstand how to propagate a random perturbation
through any algorithm step in a vision problem. The
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difficulty is that the steps are not necessarily linear
computations, the random perturbations are not nec-
essarily additive, and the appropriate kinds of pertur-
bations change from algorithm step to algorithm step.
Nevertheless, there are many computer vision and im-
age analysis algorithm steps in which the appropriate
kind of random perturbation is additive or approx-
imately additive. And for these kinds of steps one
basic measure of the size of the random perturbation
is given by the covariance matrix of the estimate.

In this paper, we describe how to propagate the
covariance matrix of an input random perturbation
through any kind of a calculation (linear or non-linear)
that extremizes an implicit scaler function, between
the input quantity and the calculated estimate. The
only assumption is that the scaler function have finite
second partial derivatives and that the random per-
turbations are small enough so that the relationship
between the scaler function evaluated at the ideal but
unknown input and out quantities and the observed
input quantity and perturbed output quantity can be
approximated sufficiently well by a first order Taylor
series expansion.

As a related case, the given propagation relation-
ships also show how to propagate the covariance of the
coefficients of a function for which we wish to find a
zero to the covariance of any zero we can find.

The analysis techniques of propagation of errors is
well known in the photogrammetry literature. The
Manual of Photogrammetry (Slama, 1980) has a sec-
tion showing how to determine the variance of Y where
Y = F(X) from the variance of X. The generalization
of this to find the covariance matrix for Y given the co-
variance matrix for X is rather straightforward. Just
expand F' around the mean of X in a first order Tay-
lor expansion and consider that Y is a linear function
T of X. Once the coefficients of the linear combina-
tion is known, so that the randomness of Y can be
approximated by Y — py = T(X — px), then the co-
variance matrix Xy of Y is easily seen to be given
in terms of T and the covariance matrix X x of X by
Yy = TExT’ (Mikhail, 1976; Koch, 1987). This only
works well for cases where the function F' can be given
explicitly. The problem we discuss here is one in which
the function F is not given explicitly, but Y is related
to X in a specific way. The techniques we employ
are well-known in statistical and engineering commu-
nities. There is nothing sophisticated in the deriva-
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tion. However, this technique is perhaps not so well
known in the computer vision community. There are
many recent vision-related papers that could be cited
to illustrate this. See for example Weng, Cohen and
Herniou (1992), Wu and Wang (1993), or Williams
and Shah (1993).

The paper concludes with a discussion of how to
validate that the software which we use to accomplish
the calculation we desire actually works. We argue
that this validation can be doné by comparing the
predicted statistical behavior with the experimentally
observed statistical behavior in a set of controlled ex-
periments.

2 The Abstract Model

The abstract model has three kinds of objects. The
first kind of object relates to the measurable quanti-
ties. There is the unobserved N x 1 vector X of the
ideal unperturbed measurable quantities. We assume
that each component of X is some real number. Added
to this unobserved ideal unperturbed vectoris an N x1
unobserved random vector AX of noise. The observed
quantity is the randomly perturbed vector X + AX.

The second kind of object relates to the unknown
parameters. There is the unobserved K x 1 vector
©. We assume that each component of © is some real
number. Added to this ideal unperturbed vector is a
K x 1 unobserved vector A© that is the random per-
turbation on © induced by, the random perturbation
AX on X. The calculated quantity is the randomly

perturbed parameter vector © = © + AO.

The third kind of object is a continuous scaler val-
ued function F which relates the vectors X and © and
which relates the vectors X + AX and © + A®. The
function F' has finite first and second partial deriva-
tives with respect to each component of © and X,
including all second mixed partial derivatives taken
with respect to a component of © and with respect to
a component of X. ,

The basic problem is: given X = X + AX, deter-
mine a © = © + A® to minimize F(X,®) given the
fact that © minimizes F(X,©).

Of course, if © is computed by an explicit function
h, so that & = h(X), the function F is just given by
f(X,0) = (0 - h(X))(© - h(=)).

3 Example Computer Vision Problems

There is a rich variety of computer vision prob-
lems which fit the form of the abstract model. In
this section we outline a few of them, specifically:
curve fitting, coordinated curve fitting, local feature
extraction, exterior orientation, and relative orienta-
tion. Other kinds of calculations in computer vision
such as calculation of curvature, invariants, vanishing
points, or points at which two or more curves intersect,
or problems such as motion recovery are all examples
of problems which can be put in the abstract form as
given above.

3.1 Curve Fitting
In the general curve fitting scenario, there is the un-
known free parameter vector, ®, of the curve and the

set of unknown ideal points on the curve {z1,...,zx}.
Each of the ideal points is then perturbed. If Az,
is the random noise perturbation of the n** point,
then the observed point n*® point is &, = z, + Azy,.
The form of the curve is given by a known function
which relates a point on the curve to the parameters
of the curve. That is, for each ideal point z,, we have
f(zn,®) = 0. We also assume that the parameters of
the curve satisfy its own set of constraint equations:
h(©) = 0. The curve fitting problem is then to find

an estimate © to minimize TN_, f2(%,, ©) subject to
h(©) = 0. To put this problem in the form of the
abstract problem we let

X = (331,...,13)\()
X = (¢1+ Dy, .., zn + Azn)
F(X,0,A) = ZI f(2n, )+ h(O)A

Then the curve fitting problem is to find © and A to
minimize F(X,0, A) where F(X,0,A) = 0.
3.2 Coordinated Curve Fitting

In the coordinated curve fitting problem, multiple
curves have to be fit on independent data, but the fit-
ted curves have to satisfy some joint constraint. We
illustrate the discussion in this section with a coordi-
nated fitting of two curves and a constraint that the
two curves must have some common point at which
they are tangent.

Let (21,...,21) be the ideal points which are as-
sociated with the first curve whose parameters are 1,
and whose constraint is hy(¢;) = 0. Each point =;
satisfies fi(z;,¥1) =0, i=1,...,1I.

Likewise, let (y1,...,ys) be the ideal points which
are associated with the second curve whose parameters
are ¥ and whose constraint is ha(12) = 0. Each point
y; satisfies fo(y;,¥2) =0, j=1,...,J. ,

The coordinated constraint is that for some un-
known z,

filzy) = O
f2(zv¢2) = 0
df1 0f2

'6—Z"(Z;1/«'1) = ‘g(zail)z)

The observed points #; and g; are related to the
corresponding ideal points by

2=z + Dz
Ui = y; + Ay;

To put this problem in the framework of the ab-
stract model, we take

XA = (él;ﬂ-)if)@lr-'-’gj)
0 = (¢1:¢2:2)
A = (:\1,;\2,:\3,;\4,:\5)
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and define
F(X,0,A) = XL, f3(&,4)+ Y T
+ Ahi($1) + Azha(s)

-+ X3f1(2, 1/;1) + X4f2(z) 1/;2)

+ 36120 - Z2e )

The coordinated curve fitting problem is then to
determine a © and A to minimize F(X,©, A), where
the perturbed © is considered related to the ideal ©
by © = © + AO.

3.3 Local Feature Extraction

There are a variety of local features that can be
extracted from an image. Examples include edges,
corners, ridges, valleys, flats, saddles, slopes, hill-
sides, saddle hillsides, etc. Each local feature involves
the calculation of some quantities assuming that the
neighborhood has the feature and then a detection is
performed based on the calculated quantities. For ex-
ample, in the simple gradient edge feature, the quan-
tity calculated is the gradient magnitude and the edge
feature is detected if the calculated gradient magni-
tude is high enough. Here we concentrate on the cal-
culation of the quantities associated with the feature
and not the detection of the feature itself.

To put this problem in the setting of the abstract
problem, we let © be the vector of unknown free
parameters of the feature and X be the unobserved
neighborhood array of noiseless brightness values. We

let X be the perturbed observed neighborhood array

of brightness values, X = X+ AX, and © be the
calculation of the required quantities from the per-

turbed brightness values X. The form the of fea-
ture is given by the known function f which satisfies
that f(X,0) = 0. The feature extraction problem is
then to find the estimate © to minimize F(X,0) =
F3(X,0).
3.4 Exterior Orientation

In the exterior orientation problem, there is a
known 3D object model having points (2, yn, 2n), 7 =
1,...,N. The unobserved noiseless perspective pro-
jection of the point (2n,Yn, zs) is given by (un,vs).
The relationship between a 3D model point and its
corresponding perspective projection is given by a ro-
tation and translation of the object model point, to
put it in the reference frame of the camera, followed
by a perspective projection. So if i represents the
triple of tilt angle, pan angle, and swing angle of the
rotation, ¢ represents the x-y-z-translation vector, and
k represents the camera constant (the focal length of
the camera lens), we can write:

k
(%, vn) r—-(p,., gn)’ Where
n

(pm n, rn)’ = R("/))(zn: Yn, Zn)’ +1

and where R(4) is the 3 x 3 rotation matrix corre-
sponding to the rotation angle vector .

The function to be minimized can then be written
as:

fn(umvm"/);t) = f(um“vmxmym 2y, 1/),t) where
J(tn, Va, T,y Yny 20, ¥, )
(1,0,0)(R(%)(Zn, Yn, 2n)' +1)
(0,0, 1)(R(¥)(zn>Yn; 2n)' + t)
(01 1; 0)(R(’(/))(£n, Yn, zn)l + t) ]2
(0,0, 1)(R(¥)(zns Yn, 2n)' + 1)

To put this problem in the form of the abstract de-
scription we take

[un — & ]2

+ [vn—k

X = (u1,v1,...,Un,0n)
X = (i,01,... 0 0n)
© = (¢’t)
6 = (41
and define
F(X,0) = ZN_, f2(itn, 5, ©)

The exterior orientation problem is then to find a ©
to minimize F(X,©), given that F(X,0) = 0. And
because F is non-negative it must be that © minimizes
F(X,0).
3.5 Relative Orientation

The relative orientation problem can be put into
the form of the abstract problem in a similar way to
the exterior orientation problem. We let the perspec-
tive projection of the n** point on the left image be
(4nL,vnr) and the perspective projection of the n'*
point on the right image be (un g, vnr). Then we can
write that

k
(¥nL,vnrL) = -z—-—(:v,.,y,.)’ and that
n

k
(unR: vnR)/ = _(pm Qn)
Tn
where (pn,¢n, 'n) is the rotated and translated model
point as given in the description of the exterior orien-
tation problem.

The observed perspective projection of the nt*
model point is noisy and represented as (@, ,) =
(un + Auy, vy + Avy,). Then taking

X = (u1L,v1L,Y1R,V1R,..., YUNL, UNL, YUNR, UNR)
X = (dr,%r, MR 1R, UNL, ONL, UNR, ONR)
e = (1'1,311,21,4--,€0N,1yN,ZN,¢,t)
© = (ﬁl’gl’él’”-ai'NQN;éNa'/f',t)

the relative orientation problem is to find © to mini-
mize

F(X’é) = Zg=1f(“nn,vnlz,93myn,Zm'/):t)
+ f(unl;vnll;xnaymzmo’o)
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4 Zero Finding

Zero finding such as finding the zero of a polynomial
in one or more variables occurs in a number of vision
problems. Two examples are the three point perspec-
tive resection problem and some of the techniques for
motion recovery. The zero finding problem is precisely
in the form required for computing the covariance ma-
trix Tae as described in the solution section. Let X

be the ideal input vector and X be the observed per-
turbed input vector. Let © be a K x 1 vector zeroing
the K x 1 function g(X, ©); that is, g(X,©) = 0. Fi-

nally, let © be the computed vector zeroing g(X G))
that is, ¢(X,©) = 0.

5 Solution: Unconstrained Case
For the purpose of covariance determination of the

computed © = © + AO, the technique used to solve
the extremization problem is not important, provided
that there are no singularities or near singularities in
the numerical computation proceedure itself.

To understand how the random perturbation AX
acting on the measurable vector X propagates to the
random perturbation A® on the parameter vector ©,
we can take partial derivatives of F' with respect to
each of the K components of © forming the gradient
g of f. The gradient g is a K x 1 vector function.

ar
g(X’ @) = —6‘5()(’9)
The solution & = O+ A extremizing F(X +AX, 6),
however it is calculated, must be a zero of g(X +

AX, 9) Now taking a Taylor series expansion of g
around (X,©) we obtain to a first order approxima-
tion:

U X +AX,0+00) = ¢EX(X,0)
391{ XN

Nx1
+ Sx—(X,0)aX

3gx Kx1
+ —(X,0)A0
56 X9

But since © + AO extremizes F(X + AX,0 + AO),
g(X + AX,0 4+ AO) = 0. Also, since © extremizes
F(X,0), g(X,0) = 0. Thus to a first order approxi-
mation,

0= —-(X O)AX + QZ%QAO

Since the relative extremum of F is a relative mini-
murn, the K x K matrix

99

must be positive definite for all (X, ®). This implies
that
af?

%(X’ @)

Jg
—6(X, 0) =

is non-singular. Hence

exists and we can write;

£O = _{g_(-‘j)(x, ) L 99 22 (x,0)8%
This relation states how the random perturbation A X
on X propagates to the random perturbation AO on
©. If the expected value of AX, E[AX], is zero, then
from this relation we see the E[AO] will also be zero,
to a first order approximation.

This relation also permits us to calculate the co-

variance of the random perturbation A®.

Tae = [AOA@']
= B 2L ax(-(35) gL axy]
= (5% )'139 [Am](“’m;g)
= (G Y nax (2L Ly

Thus to the extent that the first order approxima-
tion is good, (i.e. E[A®] = 0), then

Yy =Xae

The way in which we have derived the covariance
matrix for A© based on the covariance matrix for AX
requires that the matrices

(X 0) and (X o)

be known. But X and © are not observed. X + AX
is observed and by some means © + A® is then cal-

culated. So if we want to determine an estimate fl(;)
for the covariance matrix Xg, we can proceed by ex-
panding ¢(X,©) around ¢g(X + AX, 0 + A®).

9(X,0) 9(X + AX, 0+ AO)

ag
- sx(X+AX,0+00)AX

9y
- 8—)E(X +AX,04+ A0)AO
Here we ﬁnd in a similar manner,

A© = _( S(X+AX,0+40))7 52 99 55 (X+AX,0+00)AX

This motivates the estimator 3 ao for Tae defined by
DN
-1

(X + AX, 0 + AO) g 5 (X + AX, 0+ 20)Sax

—1

(8@

(X+AX @+A®)( (X+AX 0+ AO)
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So to the extent that the first order approximation is
good, Xg = Ype.

The relation giving the estimate L5 in terms of the
computable

dg A g A

means that a covariance matrix for the computed © =
© + AO can also be calculated at the same time that

the estimate © of O is calculated.

6 Solution: Constrained Case

In the case of the constramed optimization, the
function to be minimized is F(X OS) + h(©)'A. As

before, we define g(X,0) = £ F(X,0). We must
have at the minimum,

%(F(X, ©) + h(O)'A) = 0

And in the case of no noise with the squared criterion
function as we have been considering, F(X,0) = 0.
And this is the smallest F' can be. Hence it must be
that ¢g(X,©) = 0. This implies that £ (O)A = 0

which will only happen When A=0 since we expect 2 3‘6
to be of full rank.
Define

H(X,0,A) = ( 9(X, ez,‘_)a;.f >

Taking a Taylor series expansion of H,

H(X,0,A) = H(X+AX,0+A0,A+AN)
oH' oH' oH'

Because g(X,0) = 0,A = 0, and h(®) = 0, it follows
that H(X,9,A) = 0. Furthermore, at the computed

6 =0+20and A=A+ AA HX+AX,0+
AO,A + AA) = 0. Hence,

oH’ oH' 8H'
3% AX = FT) A®+3A AA

Writing this equation out in terms of g and h, and
using the fact that A = 0, there results

(& %)(82)-(F )

From this it follows that

Yaroar=A"'BExB'A

(g %)

where

5%

QR

|

and

oo ()

and all functions are evaluated at © and X.

7 Validation

Software for performing the optimization required

to compute the estimate © is often complicated and it
is easy for there to be errors that are not immediately
observable (like optimization software that produces
correct answers on a few known examples but fails in
a significant fraction of more difficult cases). So a key
issue in testing is whether the software is producing
the right answers in the hard cases and whether the
statistical properties of the answers it produces are
similar to the statistical properties we expect. Both
these kinds of issues can be handled by doing a signifi-
cant number of experiments whose results can be used
in a hypothesis test that everything is as it should be.

Consider what happens in a hypothesis test: a sig-
nificance level, a, is selected. When the test is run,

a test statistic, say ¢, is computed. The test statistic
is typically designed so that in the case that the hy-
pothesis is true, the test statistic will tend to have its
values. distributed around zero, in accordance with a
known distribution. If the test statistic has a value
say higher than a given ¢p, we reject the hypothesis.
Else we do not reject, in effect tentatively accepting
the hypothesis. The value of ¢; is chosen so that the
probability that we reject the hypothesis, given that
1s the hypothesis is true is less than the significance
level a.

In the case that we do not know the distribution of
the test statistic, but we do know its mean and vari-
ance, we can still do the hypothesis test by indepen-
dently generating the test statistic a number of times.
So suppose that we repeat the test M times. The mth
repetition generates a test statistic ¢,,. So after M
repetitions we have observed the M independent and
identically distributed statistics ¢1,...,¢p. Let the
mean and varianceé of the each of the test statistics be
denoted by p and 02, respectively. Calculate the mean
test statistic ¢ = ﬁzxﬂ ém. Let ¢y be chosen so
that the probability that a Normally distributed ran-
dom variable will have a value greater than ; is less
than the significance level a. With M large enough so
that the mean test statistic approaches being a Nor-

mal, under the hypothesis, the probability that q; will
be less than j’ﬁto + p is equal to a.

To test the hypothesis that © is unbiased and that
the covariance matrix Y ae for the © is calculated

( )‘ EAx( )( )

we can fix a value for a, the significance level of the
hypothesis test. We can fix o, the noise standard devi-
ation. We can fix M, the number of different tests and
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we can fix J, the number of repetitions of each test.
Each test consists of randomly choosing a configura~
tion X™V*1 and the associated ©. Each repetition of
the test independently randomly generates a pertur-
bation AX which is added to X thereby forming the
observed X + AX. From the observed X + A X, the

estimate © is calculated by the optimization technique
or whatever computational technique. The distribu-
tion of © is not known. But to a first order approxi-
mation, the expected value of each 6 is known to be
© and the covariance of each © is known to be L.
Hence, after J repetitions, the experimentally deter-
mined © should have a multivariate Normal distribu-
tion with mean © and covariance Xg/J. Therefore,
the test statistic

J(6 - 0)YSs~1(6 - 0)

will have a x-squared distribution with N degrees of
freedom. So for each of the M different tests we gen-
erate a test statistic which is y-squared distribution
with N degrees of freedom. Since each of these tests
is independent, if we sum the test together we obtain
a test statistic, say T, which is y-squared distribution
with M x N degrees of freedom. So to perform the test,
we determine the value ¢y satisfying that the proba-
bility of a x-squared distributed random variable with
N x M degrees of freedom taking a value greater than
to is equal to the significance level . Then if the test
statistic T is greater than g, we reject the hypothesis.
If the test statistic T" is less than or equal to tg, we
tentatively accept the hypothesis.

Once we have accepted the hypothesis that the ex-
pected value of the random vector © is © and that ©
has covariance Xg, where

199

ey 99 1, 997"
o =(38)" ax"ax(zx)(58)

we can test the hypothesis that the estimated covari-

ance matrix Xg is indeed an estimate for X¥5. We can
perform M difterent tests. For each test, we will ran-
domly generate a configuration X and corresponding
©. Each test will have J repetitions in which a per-
turbation AX is added to X and the corresponding
© and Yy is calculated. The resulting J estimated
covariance matrices can be averaged together forming
the experimental average covariance matrix ¥ g and
the squared difference between the diagonal and upper
half entries of Y3 and X4 should then be sufficiently
small. If enough of the M tests result in squared dif-
ferences which are sufficiently small then we accept
the hypothesis.

Another hypothesis we can test is whether the ex-
perimentally determined covariances are sufficiently
close to the theoretically predicted covariances. Here
for each configuration X and associated ©, we per-
form J repetitions calculating the estimate éj on the

§* repetition. The experimentally determined covari-

ance i‘é is given by

1
J

As J gets large we should observe that the difference
between the analytically derived covariance Xg and

the experimentally determined covariance £ goes to
Z€ro.

Te = =%7.,1(0; — ©)(0; — ©)

8 Conclusion

Making a successful vision system for any particular
application typically requires many steps, the optimal
choice of which is not always apparent. To under-
stand how to do the optimal design, a synthesis prob-
lem, requires that we first understand how to solve
the analysis problem: given the steps of a particular
algorithm, determine how to propagate the parame-
ters of the perturbation process from the input to the
parameters describing the perturbation process of the
computed output. The first basic case of this sort of
uncertainty propagation is the propagation of the co-
variance matrix of the input to the covariance matrix
of the output. This is what this paper has described.

This work does not come near to solving what is
required for the general problem, because the general
problem involves perturbations which are not additive.
That is, in mid and high-level vision, the appropriate
kinds of perturbations are perturbations of structures.
Now, we are in the process of understanding some of
the issues with these kinds of perturbations and expect
to soon have some results in this area.
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