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A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking

M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp

Abstract—increasingly, for many application areas, it is related to monetary flow, interest rates, inflation, etc. The mea-
becoming important to include elements of nonlinearity and surement vector represents (noisy) observations that are related
non-Gaussianity in order to model accurately the underlying 14 e state vector. The measurement vector is generally (but not
dynamics of a physical system. Moreover, it is typically crucial i) of | di ion than the stat tor. The stat
to process data on-line as it arrives, both from the point of view necessarily) o ower Imepsmn an ?S ale \{ec Qr' € stale-
of storage costs as well as for rapid adaptation to changing SPace approach is convenient for handling multivariate data and
signal characteristics. In this paper, we review both optimal and nonlinear/non-Gaussian processes, and it provides a significant
suboptimal Bayesian algorithms for nonlinear/non-Gaussian advantage over traditional time-series techniques for these prob-
tracking problems, with a focus on particle filters. Particle filters lems. A full description is provided in [41]. In addition, many

are sequential Monte Carlo methods based on point mass (or ied les illustrating th licati f i y
“particle”) representations of probability densities, which can varied exampies iflustrating the application ol nonfinear/non-

be applied to any state-space model and which generalize the Gaussian state space models are given in [26].
traditional Kalman filtering methods. Several variants of the In order to analyze and make inference about a dynamic

particle filter such as SIR, ASIR, and RPF are introduced within  system, at least two models are required: First, a model de-
a generic framework of the sequential importance sampling (SIS) ‘geriping the evolution of the state with time (the system model)
algorithm. These are discussed and compared with the standard d d del relating th . s to th
EKF through an illustrative example. and, second, a model relating the noisy measurements to the
state (the measurement model). We will assume that these
models are available in a probabilistic form. The probabilistic
state-space formulation and the requirement for the updating of
information on receipt of new measurements are ideally suited
I. INTRODUCTION for the Bayesian approach. This provides a rigorous general
ANY problems in science require estimation of the Stal]‘éamework for d'ynamlc state estlmatlon. problems. L
lfn the Bayesian approach to dynamic state estimation, one

of a system that changes over time using a sequence 9 - fruct th teri bability density functi
noisy measurements made on the system. In this paper, we \%Fmp s 1o construct the posterior probabiiity density Tunction
f) of the state based on all available information, including

concentrate on the state-space approach to modeling dynal t of ved ts. Si this pdf embodi I
systems, and the focus will be on the discrete-time formulatigfi¢ Set Of received measurements. Since this pdf embodies a
ilable statistical information, it may be said to be the com-

of the problem. Thus, difference equations are used to mo . L L :
the evolution of the system with time, and measurements ste solution to the estimation problem. In principle, an optimal
' gg’t_h respect to any criterion) estimate of the state may be ob-

assumed to be available at discrete times. For dynamic statet dqt the odf. A fth tth fimat
timation, the discrete-time approach is widespread and convaneéd from the padt. A measure of the accuracy ot the estimate

nient may also be obtained. For many problems, an estimate is re-

The state-space approach to time-series modeling focusedlyjred every time that a measurement is received. In this case, a

tention on the state vector of a system. The state vector Céﬁgursive filter is a convenient solution. A recursive filtering ap-
tains all relevant information required to describe the syste?ﬁoaCh means that received data can be processed sequentially

under investigation. For example, in tracking problems, this ilather than as a batch so that it is not necessary to store the com-

formation could be related to the kinematic characteristics BPte data set nor to reprocess existing data if a new measure-

the target. Alternatively, in an econometrics problem, it could yaent becomes gv§|lab1e5uch a filter COI’]SIS.'[S' of essentially
two stages: prediction and update. The prediction stage uses the

system model to predict the state pdf forward from one mea-
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We begin in Section Il with a description of the nonlinear Attime stepk, a measurememt, becomes available, and this
tracking problem and its optimal Bayesian solution. Whemay be used to update the prior (update stage) via Bayes’ rule
certain constraints hold, this optimal solution is tractable.
The Kalman filter and grid-based filter, which is described p(X|z1:8) = Pzxxi)p(xxlz1n-1)
in Section Ill, are two such solutions. Often, the optimal p(Zk[Z10-1)
solution is intractable. The methods outlined in Section I\{here the normalizing constant
take several different approximation strategies to the optimal
solution. These.approachf—zs include the gxten.ded Kal_man fiI.ter, p(z|Z10—1) = / P(z] %) p(Xk|Z10—1) dXs (5)
approximate grid-based filters, and particle filters. Finally, in

Se.ction VI, we use a simple scqlar example to iIIu;trate' SOMEpends on the likelihood function(zy|x;) defined by the
points about the approaches discussed up to this point ﬁ‘ﬁépasurement model (2) and the known statistica,ofIin the
then draw conclusions in Section VII. This paper is a tutorlalljpdate stage (4), the measuremeptis used to modify the
therefore, to facilitate easy implementation, the “pseudo-codﬁr’ior density to obtain the required posterior density of the

4)

for algorithms has been included at relevant points. current state.
The recurrence relations (3) and (4) form the basis for the
[I. NONLINEAR BAYESIAN TRACKING optimal Bayesian solutioh.This recursive propagation of the

osterior density is only a conceptual solution in that in general,

cannot be determined analytically. Solutions do exist in a re-

strictive set of cases, including the Kalman filter and grid-based

filters described in the next section. We also describe how, when

xp = fi(Xp—1, Va—1) (1) the analytic solution is intractable, extended Kalman filters, ap-

proximate grid-based filters, and particle filters approximate the

wherefy: R+ x {" — R"= is a possibly nonlinear function optimal Bayesian solution.

of the statex;,_1, {vk—1, ¥ € N} is ani.i.d. process noise se-

quencen,, n, are dimensions of the state and process noise 1. OPTIMAL ALGORITHMS

vectors, respectively, an¥ is the set of natural numbers. TheA Kalman Filter

objective of tracking is to recursively estimatg from mea- "~

surements The Kalman filter assumes that the posterior density at every
time step is Gaussian and, hence, parameterized by a mean and

71, = hy(xg, ny) (2) covariance.

If p(xr_1|z1..—1) IS Gaussian, it can be proved that
wherehy,: R x R"» — R is a possibly nonlinear func- P(Xx|z1:x) is also Gaussian, provided that certain assumptions
tion, {nx, & € N} is an i.i.d. measurement noise sequencBold [21]:
andn., n, are dimensions of the measurement and measure-+ v;_; andn; are drawn from Gaussian distributions of
ment noise vectors, respectively. In particular, we seek filtered known parameters.
estimates ok; based on the set of all available measurements « f;,(xx_1, v_1) is known and is a linear function of;,_;
z1.p = {z;,1 =1, ..., k} up to timek. andvy_1.

From a Bayesian perspective, the tracking problem is to re- ¢ hy(xs, n;) is a known linear function of;, andny,.
cursively calculate some degree of belief in the statat time  That is, (1) and (2) can be rewritten as
k, taking different values, given the datg; up to timek. Thus,
it is required to construct the pgfxy|z...). It is assumed that Xp = FpXp—1 + Vi1 (6)
the initial pdfp(xo|zo) = p(xo) of the state vector, which is also z;, = Hyxp, + ny,. @)
known as the prior, is availabled being the set of no measure- ) o ) )
ments). Then, in principle, the pgfxy|z1.) may be obtained, F;, and Hk. are known matrices defining the_ linear functions.
recursively, in two stages: prediction and update. The covariances Of.’kfl andny, are, respectively®; 1 and
Suppose that the required pofx;_; |z1..—1) at timek —  Fx. Here, we con_sm_ler th_e case whef_, andn,; have zero
1 is available. The prediction stage involves using the systdRfan and are statistically independent. Note that the system and
model (1) to obtain the prior pdf of the state at tileia the Measurement matricds; andHy, as well as noise parameters
Chapman—Kolmogorov equation Qr_1 and Ry, are allowed to be time variant.
The Kalman filter algorithm, which was derived using (3) and
(4), can then be viewed as the following recursive relationship:

To define the problem of tracking, consider the evolution cﬁ
the state sequendex;, & € N} of a target given by

P(Xp|z1k-1) = / p(Xp|xk—1)p(Xk—1]Z1:61) dXp—1. (3)
p(Xp—1|Z1a—1) =N(Xp—1; Mp_1ji—1, Pocijp—1) (8)

Note that in (3), use has been made of the fact gy, |x;_1, p(xk|z1n—1) =N (Xp; mjr—1, Prjr—1) )

Z1—1) = p(xp|xx—1) as (1) describes a Markov process p(xx|z1:0) =N (Xi; Mprs Prjr) (20)

of order one. The probabilistic model of the state evolution,, , , _ _ ,
For clarity, the optimal Bayesian solution solves the problem of recursively

P(Xk|xk—l). is_ defined by the system equation (1) and thgycyiating the exact posterior density. An optimal algorithm is a method for
known statistics ofy_1. deducing this solution.
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where B. Grid-Based Methods
Grid-based methods provide the optimal recursion of the fil-

Milk—1 = Fpma_1jr—1 (1) tered density(xy|z1.1) if the state space is discrete and consists
Prjr—1 = Q-1 + FkPk_1|k_1FE (12) of afinite number of states. Suppose the state space attinie
Mg =Mkt + Ki(zn — Homppp_1) (13) cqnsisl'cs oLdiscre;e stat%_li)i b:| 1, f ,hNS. For each state
., let the conditional probability of that state, given mea-
Py = Prjp—1 — KpH i Prjp—1 (14) Zh-1 P Y g

surements up to timé — 1 be denoted bys; ., ,, that s,
Pr(xp_1 =X, _,|2z10-1) = wifllkfl' Then, the posterior pdf

and where\V (z; m, P) is a Gaussian density with argument :
atk — 1 can be written as

meanm, and covarianceé’, and

N,
Sk = HpPyp—1 Hi, + Ry, (15) p(Xk—1|Z1:%-1) = Z Wi 18X —x31) - (17)
Ky = P HES; (16) =

_ _ _ whereé(-) is the Dirac delta measure. Substitution of (17) into
are the covariance of the innovation tezm— Hymy 1, and  (3) and (4) yields the prediction and update equations, respec-
the Kalman gain, respectively. In the above equations, the traggely

pose of a matrix\/ is denoted byl 7. .

This is the optimal solution to the tracking problem—if the A i i
(highly restrictive) assumptions hold. The implication is that no p(xk|Z1k-1) = Z Whik-16(Xk — %) (18)
algorithm can ever do better than a Kalman filter in this linear =t

N,

Gaussian environment. It should be noted that it is possible to i i

) , |z1:k) = 1R0(XE — X, 19
derive the same results using a least squares (LS) argument [22]. p(xrlzin) ; W |k (x1 — x},) 19)
All the distributions are then described by their means and co-
variances, and the algorithm remains unaltered, but are not c¥ere
strained to be Gaussian. Assuming the means and covariances N, '
to be unbiased and consistent, the filter then optimally derives W1 2 Z wi_llk_lp(xﬂx{ﬁl) (20)
the mean and covariance of the posterior. However, this poste- j=1
rior is not necessarily Gaussian, and therefore, if optimality is N wi|k_1p(zk|xi)
the ability of an algorithm to calculate the posterior, the filter is Wi = ~ (22)
then not certain to be optimal. ~ j

. . . . w1 Z | X3,

Similarly, if smoothed estimates of the states are required, ; k"‘_lp( lxi)

that is, estimates of(xy|z1.x+¢), wheref > 03 then the

Kalman smoother is the optimal estimator ofxx|z1.x+¢)- The above assumes ﬂmkﬂxi_ﬂ andp(z|x;,) are known

This holds if/ is fixed (fixed-lag smoothingif a batch of data but does not constrain the particular form of these discrete densi-

are considered aril < £ < & (fixed-interval smoothing or if  ties. Again, this is the optimal solution if the assumptions made

the state at a particular time is of interéss fixed (fixed-point hold.

smoothing. The problem of calculating smoothed densities is

of interest because the densities at tilnare then conditional IV. SUBOPTIMAL ALGORITHMS

not only on measurements up to and including time infléxt In many situations of interest, the assumptions made above

also on future measurements. Since there is more informatié)(glnot hold. The Kalman filter ar,wd id-based
. grid-based methods cannot,

on which to base the estimation, these smoothed densitiest reerefore be used as described—aporoximations are necessar
typically tighter than the filtered densities. ’ PP Y

Although this is true, there is an algorithmicissuethatshoﬁ this section, we consider three approximate nonlinear

be highlighted here. It is possible to formulate a backward-ti ayesian filters:

Kalman filter that recurses through the data sequence from thé?) €xtended Kalman filter (EKF);
final data to the first and then combines the estimates from theP) @Pproximate grid-based methods;
forward and backward passes to obtain overall smoothed es®) Particle filters.

Emates [20]. A dlfferent_ formulation |mpI_|C|tIy calculate_s theA _Extended Kalman Filter
ackward-time state estimates and covariances, recursively esti-

mating the smoothed quantities [38]. Both techniques are pronéf (1) and (2) cannot be rewritten in the form of (6) and (7)
to having to calculate matrix inverses that do not necessargcause the functions are nonlinear, then a local linearization of
exist. Instead, it is preferable to propagate different quantitiéte equations may be a sufficient description of the nonlinearity.
using an information filter when carrying out the backward-timéhe EKF is based on this approximatirix |z1 1) is approx-
recursion [4]. imated by a Gaussian

p(X—1|z1:0—1) RN (Xp—1; Mp_1jp—1, Pec1jp—1) (22)

|Z1.0—1) & Mtk 1, Prlp_ 23
3If ¢ = 0, then the problem reduces to the estimatiop©f:|z1..) consid- p(xk|zl‘k 1) N(Xk’ k=1, Lklk 1) ( )
ered up to this point. p(Xk|2z1:0) RN (Xp; Mprs Prgr) (24)
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where where
mpjk—1 = I (mp_1jp—1) (25) ; A & j / _j
N . Wi = w x|x3_)dx (36
Puiot = Qus +FkPk—1|k—1FE (26) k|k—1 ; k—1|k—1 rex p(x| kfl) (36)
My = Mpj—1 + Kr(ze — ha(mpp—1)) (27) ‘
Py = Pujr—1 — KiHy Pp_1 (28) N Whik-1 /XEXZ- p(zefx) dx
. . X wim = — k . (37)
and where nowf (.) andhy(.) are nonlinear functions, ar¥ S
andHj, are local linearizations of these nonlinear functions (i.e., Z Whik—1 /xEXj plzi|x) dx
matrices) =t g
R dfy () Here,if;_l denotes the center of thth cell at time index: — 1.
by = dr (29) The integrals in (36) and (37) arise due to the fact that the grid
IRk pointsxi,i =1, ..., N, represent regions of continuous state
. — dhy(z) 30 space, and thus, the probabilities must be integrated over these
T T _ (30) regions. In practice, to simplify computation, a further approx-
) wjm"'“‘"l imation is made in the evaluation ef; , . Specifically, these
Sk :HkPMk_lH,? + Ry, (31) weights are computed at the center o# the “cell” corresponding
" to xj,
Ky =Py H; S, (32)
N,
The EKF as described above utilizes the first term in a Taylor i A J =i s
expansion of the nonlinear function. A higher order EKF that ke ; wk_llk_lp(xk|xk_1) (38)
retains further terms in the Taylor expansion exists, but the ad- w plzi|%5)
ditional complexity has prohibited its widespread use. Wiy N = Mk—1 (39)
Recently, the unscented transform has been used in an EKF SN —j
framework [23], [42], [43]. The resulting filter, which is known ;wkm,lp(zklxk)
=

as the “unscented Kalman filter,” considers a set of points that
are deterministically selected from the Gaussian approximationThe grid must be sufficiently dense to get a good approxi-
to p(xx|z1.1). These points are all propagated through the trygation to the continuous state space. As the dimensionality of
nonlinearity, and the parameters of the Gaussian approximatifig state space increases, the computational cost of the approach
are then re-estimated. For some problems, this filter has berarefore increases dramatically. If the state space is not finite in
shown to give better performance than a standard EKF sing@ent, then using a grid-based approach necessitates some trun-
it better approximates the nonlinearity; the parameters of tbgtion of the state space. Another disadvantage of grid-based
Gaussian approximation are improved. methods is that the state space must be predefined and, there-

However, the EKF always approximatggxx|zi..) t0 fore, cannot be partitioned unevenly to give greater resolution
be Gaussian. If the true density is non-Gaussian (e.g., ifift high probability density regions, unless prior knowledge is
is bimodal or heavily skewed), then a Gaussian can nevged.
describe it well. In such cases, approximate grid-based filtersHidden Markov model (HMM) filters [30], [35], [36], [39]
and particle filters will yield an improvement in performancere an application of such approximate grid-based methods in
in comparison to that of an EKF [1]. a fixed-interval smoothing context and have been used exten-
sively in speech processing. In HMM-based tracking, a common
approach is to use the Viterbi algorithm [18] to calculate the

If the state space is continuous but can be decomposed intaximuma posterioriestimate of the path through the trellis,
N; “cells,” {x}:i = 1, ..., N;}, then a grid-based methodthat is, the sequence of discrete states that maximizes the prob-
can be used to approximate the posterior density. Specificaliyility of the state sequence given the data. Another approach,
suppose the approximation to the posterior pdf atl is given due to Baum—Welch [35], is to calculate the probability of each
by discrete state at each time epoch given the entire data sequence.

B. Approximate Grid-Based Methods

N,
pOci1lzin—1) & Y wh 16001 —xj1)- (33)
=1
Then, the prediction and update equations can be written as”- Sequential Importance Sampling (SIS) Algorithm
~ The sequential importance sampling (SIS) algorithm is
p(xk|Zra1) & Z wi 8(xp, — x1.) (34) a Monte Carlo (MC) method that forms the basis for most
RIEIh= ~ klk—1035k b sequential MC filters developed over the past decades; see [13],

V. PARTICLE FILTERING METHODS

N . . 4The Viterbi and Baum-Welch algorithms are frequently applied when the
p(Xi|21:1) = Z wilké(xk - X3,) (35) state space is approximated to be discrete. The algorithms are optimal if and
i=1 only if the underlying state space is truly discrete in nature.



178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

[14]. This sequential MC (SMC) approach is known variously(xg.x—1|21.x—1), P(Zx|Xz% ), andp(xx |xz—1 ). Note that (4) can
as bootstrap filtering [17], the condensation algorithm [29he derived by integrating (45)

particle filtering [6], interacting particle approximations [10], p(zk|X0:k]21:51)P(X0:k |21 1)

[11], and survival of the fittest [24]. It is a technique for imple- p(Xo|z1k) = Pz Z101)

menting a recursive Bayesian filter by MC simulations. The key '

idea is to represent the required posterior density function by a _ P(Za[Xo|Z1:0—1)p(Rk[ X0k —1|Z1:4—1)

set of random samples with associated weights and to compute p(2zx|z10-1)

estimates based on these samples anq weights. As the. number X p(Xok—1|Z1:6—1) (45)
of samples becomes very large, this MC characterization

becomes an equivalent representation to the usual functional _ p(za]xa)p(xn(xr—1)

description of the posterior pdf, and the SIS filter approaches T p(zrlzie-1) P(Xox—1lz1-1)

the optimal Bayesian estimate.
In order to develop the details of the algorithm, let _ O_(p(zk|Xk)p(xk(xk__l)p(xozk_l|Z1:"‘_1_)' (46)
{xi.., wi}Ye, denote @andom measurthat characterizes the ~BY substituting (44) and (46) into (43), the weight update

posterior pdi(xo.x|z1.% ), where{x?_,,i = 0, ..., N,}isaset €quation can then b? ShOW” to be ‘

of support points with associated weighitsi, s = 1, ..., N,} o P(zr|xp) (X X5 )P(XG.p 1 |Z1:0—1)

andxos. = {x;,7 =0, ..., k} is the set of all states up to time W X g(xiIxd, 1, zia)a(XE . |Z1k—1)

k. The weights are normalized such thdt w;, = 1. Then, the 4 o

posterior density at can be approximated as — i lp(zk|xi)p(xi|xi—1) (47)

Q(xﬂxz):k_lv Zl:k) '
(40) Furthermore, ifg(xx|%0:x—1, 21:x) = ¢(Xk|Xr—1, 21), then
the importance density becomes only dependent,on and
i i L 7. This is particularly useful in the common case when only
We therefore have a discrete weighted approximation {0 t&;ered estimate ob(xx|z1:1) is required at each time step.
true posteriorp(xo:x|z1:x). The weights are chosen using thg- o this point on, we will assume such a case, except when
principle ofimportance samplingg], [12]. This principle relies - o ity stated otherwise. In such scenarios, axjyneed be

on the following. Supposg(x) o< () is a probability density iq4: therefore, one can discard the peh_, and history of
from which it is difficult to draw samples but for whieHz) can observationg, ;_;. The modified weight is then

be evaluated [as well agx) up to proportionality]. In addition, i i |5t
[ agx) up to prop y] (2 |%5,) (x5 %5 1)

N,
p(Xo:x|2z1:4) = Z w6(Xo:k — Xo.)-

=1

letx ~ g(x),i =1, ..., N, be samples that are easily gener- wh, o wh_, L2 (48)
ated from a proposaf(-) called anmportance densityThen, a q(xp.[%,_1, 2x)
weighted approximation to the denspy:) is given by and the posterior filtered densipy(xx|z1.x) can be approxi-
N mated as
T) &~ w'é(x — & 41 Naoo )
o ; ( : @ p(xilzie) &) wib(xi — xj) (49)
where =
4 where the weights are defined in (48). It can be shown that as
i ”(“7%) (42) N, — o0, the approximation (49) approaches the true posterior
q(z*) densityp(xz|z1.1).
is the normalized weight of theh particle. The SIS algorithm thus consists of recursive propagation of

Therefore, if the samples;,, were drawn from an impor- the weights and support points as each measurement is received

tance density(xo.x|z1.%), then the weights in (40) are deﬁnedsgquentially. A pseudo-code description of this algorithm is
by (42) to be given by algorithm 1.

wh, o pi(xgzuzlzk). (43)
(X x| Z1:1) Algorithm 1: SIS Particle Filter

Returning to the sequential case, at each iteration, oHe}, wyticy] = SIS [{x}_;, wi_ }7=), 7]
could have samples constituting an approximation ® FORi =1: N,

p(Xor—1|Z1—1) and want to approximatep(xo.x|z1:x) — Draw xj, ~ q(xx|x)_,, 2zi) ‘
with a new set of samples. If the importance density is chosen— Assign the particle a weight, wi,
to factorize such that according to (48)

e END FOR

Q(Xo:k|Z1:k) = Q(Xk|Xo:k—17 Zl:k)Q(Xo:k—1|Z1:k—1) (44)

then one can obtain sampke, ~ q(xo.x|z1.x) by augmenting

each of the existing samplem%:k_]L ~ q(X0:k—1|2Z1.1—1) With 1) Degeneracy ProblemA common problem with the SIS
the new statex}; ~ g(xx|X0:x—1, 211 ). TO derive the weight particle filter is the degeneracy phenomenon, where after a few
update equationp(xo.x|z1.x) IS first expressed in terms of iterations, all but one particle will have negligible weight. It has



ARULAMPALAM et al. TUTORIAL ON PARTICLE FILTERS 179

been shown [12] that the variance of the importance weights camAnalytic evaluation is possible for a second class of models
only increase over time, and thus, it is impossible to avoid tiier which p(x|x¢ _,, z;) is Gaussian [12], [9]. This can occur
degeneracy phenomenon. This degeneracy implies that a lafglee dynamics are nonlinear and the measurements linear. Such
computational effort is devoted to updating particles whose codsystem is given by

tribution to the approximation tp(xx|z;.x) is almost zero. A Xp = fu(Xpo1) + Vi1 (54)
suitable measure of degeneracy of the algorithm is the effective

sample sizeV.;; introduced in [3] and [28] and defined as where 2 = HiXe + g (55)
Neyr = S (- (50) Vi1 ~N(Vi—1;0n, x1, Qr—1) (56)

1+ Var(w;*) 3 Unyx1,
wherew;? = p(x}|z1.4)/q(x}|xk_;, z) is referred to as the i ~ N (@i Onx1, o) 57)

“true weight.” This cannot be evaluated exactly, but an estime@@dfx: ®"= — R~ is a nonlinear functionii), € R"=*"= isan
]\7} of N, ;s can be obtained by observation matrix, and;_; andn; are mutually independent

i.i.d. Gaussian sequenceswith_; > 0andR; > 0. Defining

— 1

Nepp=3—— (51) S =00 + HER T H, (58)
> (wh)? my, = Q1 (k1) + Hi Ry 'z (59)

‘ =1 one obtains
wherewy;, is the normalized weight obtained using (47). Notice P(Xa|Xno1, Z2) = N(xx; my, S (60)

thatN. ;s < IV, and smallV,;; indicates severe degeneracy. q
Clearly, the degeneracy problem is an undesirable effect in pQP-
ticle filters. The brute force approach to reducing its effect is to P(zx[xx—1) = N (z&; Hifi(xx—1), Qr-1 + Hx Ri H]).

use a very largé/,. This is often impractical; therefore, we rely . - (61)
on two other methods: a) good choice of importance density and"0r many other models, such analytic evaluations are not
b) use of resampling. These are described next. possible. However, it is possible to construct suboptimal

2) Good Choice of Importance Densitythe first method in- approximations to the optimal importance density by using

volves choosing the importance densify|xi._, , z;) to min- local linearization techniques [12]. Such linearizations use
v c—17 v . - - . . .

imize Var(w}?) so that. ;; is maximized. The optimal impor- an importance density that is a Gaussian approximation to

tance density function that minimizes the variance of the tr&Xk|Xk—1, z1). Another approachis to estimate a Gaussian ap-

weightsw conditioned onki_, andz; has been shown [12] Proximation top(xy|x;—s, zi) using the unscented transform
ghisey k=1 2 [12] [40]. The authors’ opinion is that the additional computational

to be ) ) L
‘ ‘ cost of using such an importance density is often more than
Xk (Xp—15 21 )opt =P(Xn(Xj—1, Zk) offset by a reduction in the number of samples required to
(| xk (x5 p(xp(x5_) achieve a certain level of performance.
= (Zn(x_ 1) - (52) Finally, it is often convenient to choose the importance den-
o f Idp B -1 sity to be the prior
Substitution of (52) into (48) yields i i
of (52 o (48)y axelxi 1. ) = pOaalxi 1) (©2)
wi X w1 p(2k|XG 1) Substitution of (62) into (48) then yields
iy [ palpil ) dx. (69 w, o wj_yp(za i) (63)

. . . - . . . This would seem to be the most common choice of impor-
This choice of importance density is optimal since fora IVence density since it is intuitive and simple to implement. How-
x;_ . w;, takes the same value, whatever sample is drawn fr

; i ; i er, there are a plethora of other densities that can be used, and
9(Xx|X}._ 1, Z1)ope. HENCE, conditional omy_,, Var(wi’) = 0. ,qjjustrated by Section VI, the choice is the crucial design step
This is the variance of the different;, resulting from different ;o design of a particle filter.
sampledx}c. _ _ ) 3) Resampling:The second method by which the effects of

This optimal importance density suffers from tWQjegeneracy can be reduced is to use resampling whenever a sig-
major drawbacks. It requires the ability to sample fromjficant degeneracy is observed (i.e., whp;; falls below
p(xx|x},_1, z) and to evaluate the integral over the new stat8ome thresholdVy). The basic idea of resampling is to elimi-

In the general case, it may not be straightforward to do eithgste particles that have small weights and to concentrate on par-
of these things. There are two cases when use of the optiméles with large weights. The resampling step involves gener-
importance density is possible. ating a new sefxy*}\*, by resampling (with replacementy,

The first case is wherx; is a member of a finite set. In times from an approximate discrete representatigriof|z;.x)
such cases, the integral in (53) becomes a sum, and samplivgn by
from p(xx|x},_,, zx) is possible. An example of an application
whenx; is a member of a finite set is a Jump—Markov linear
system for tracking maneuvering targets [15], whereby the dis-
crete modal state (defining the maneuver index) is tracked using
a particle filter, and (conditioned on the maneuver index) the® thatPr(x}* = xi) = wi The resulting sample is in fact
continuous base state is tracked using a Kalman filter. an i.i.d. sample from the discrete density (64); therefore, the

N,
p(Xnlz1) & > wib(xi — ) (64)
=1
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weights are now reset te = 1/N,. It is possible to imple-
mgnt this resampling procedgre @(N,) operations by sam- Algorithm 3: Generic Particle Filter
pling N, ordered uniforms using an algorithm based on ord i, wi Ve ] = PR{x wi WY g
statistics [6], [37]. Note that other efficient (in terms of reduce.' F%)RZ Z_=11_ N k—1r Th—1Ti=1> Ok
MC variation) resampling schemes, such as stratified sampling o i
and residual sampling [28], may be applied as alternatives to this ~ 2"&W Xk ~ q(xnlxi_y, 20) ;
algorithm. Systematic resampling [25] is the scheme preferred Ass'gf‘ the particle a weight, W
by the authors [since it is simple to implement, takegV,) according to (48)
time, and minimizes the MC variation], and its operation is dé- END FOR ) N
scribed in Algorithm 2, wher®/[a, ] is the uniform distribution ® Calculate total weight: t = SUM{wj };21]
on the intervala, 4] (inclusive of the limits). For each resam-*® FOR 4 = LNy
pled particlex:*, this resampling algorithm also stores the index — Normalize:  w; =
of its parent, which is denoted 3. This may appear unneces* END FOR
sary here (and is), but it proves useful in Section V-B2. e Calculate  Ncsp using (51)

A generic particle filter is then as described by Algorithm 3e IF Ny < N

Although the resampling step reduces the effects of the de— Resample using algorithm 2:
generacy problem, it introduces other practical problems. First,x [{x%, wi, —}iv*,] = RESAMPLEx, wi }ive |
it limits the opportunity to parallelize since all the particles must END |IF
be combined. Second, the particles that have high weights
are statistically selected many times. This leads to a loss of di=
versity among the particles as the resultant sample will contain _ )
many repeated points. This problem, which is knowsasple There have been some systematic _ technlq_ues proposed
impoverishmentis severe in the case of small process noistecently to solve the problem of sample impoverishment. One
In fact, for the case of very small process noise, all particl€§ich technique is theesample-movalgorithm [19], which is
will collapse to a single point within a few iteratioasThird, Nnot be described in detail in this paper. Although this technique
since the diversity of the paths of the particles is reduced, ai{aws conceptually on the same technologies of importance
smoothed estimates based on the particles’ paths degehera@mpling-resampling and MCMC sampling, it avoids sample
Schemes exist to counteract this effect. One approach consideygoverishment. It does this in a rigorous manner that ensures
the states for the particles to be predetermined by the forwdh# particles asymtotically approximate samples from the
filter and then obtains the smoothed estimates by recalculatimgsterior and, therefore, is the method of choice of the authors.
the particles’ weights via a recursion from the final to the firsAn alternative solution to the same problemrégjularization
time step [16]. Another approach is to use MCMC [5]. [31], which is discussed in Section V-B3. This approach
is frequently found to improve performance, despite a less
rigorous derivation and is included here in preference to the

1,
T wy,

Algorithm 2: Resampling Algorithm resample-move algorithm since its use is so widespread.
[{x3", wi, ¥} ] = RESAMPLE[{x}, w}} ] 4) Techniques for Circumventing the Use of a Suboptimal Im-
e Initialize the CDF: c1 =0 portance Density:lt is often the case that a good importance
e FOR¢ = 2: N, density is not available. For example, if the pridks|xx—1) IS
— Construct CDF:  ¢; = ¢;—1 + wj, used as the importance density and is a much broader distribu-
e END FOR tion than the likelihoog(z|xz ), then only a few particles will
e Start at the bottom of the CDF: i=1 have a high weight. Methods exist for encouraging the particles
e Draw a starting point: uy ~ U[0, N1 to be in the right place; the use of bridging densities [8] and
e FORj =1: N, progressive correction [33] both introduce intermediate distri-
— Move along the CDF:  u; = u; + N, 1(j —1) butions between the prior and likelihood. The particles are then
— WHILEu; > ¢ reweighted according to these intermediate distributions and re-
x 1 =4+1 sampled. This “herds” the particles into the right part of the state
— END WHILE ' space.
— Assign sample:  x3" = x|, Another approach known as partitioned sampling [29] is
— Assign weight:  wj, = Nt useful if the likelihood is very peaked but can be factorized
— Assign parent: i =4 into a number of broader distributions. Typically, this occurs
e END FOR because each of the partitioned distributions are functions of

some (not all) of the states. By treating each of these partitioned
distributions in turn and resampling on the basis of each such
%artitioned distribution, the particles are again herded toward

SIf the process noise is zero, then using a particle filter is not entirely a| o
propriate. Particle filtering is a method well suited to the estimation of dynami@€ Peaked likelihood.
states. If static states, which can be regarded as parameters, need to be estimated
then alternative approaches are necessary [7], [27]. B. Other Related Particle Filters

6Since the particles actually represent paths through the state space, by storingl}h ial i l | ith di
the trajectory taken by each particle, fixed-lag and fixed-point smoothed esti- | € Séquential importance sampling algorithm presented in

mates of the state can be obtained [4]. Section V-A forms the basis for most particle filters that have
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been developed so far. The various versions of particle filteésEND FOR

proposed in the literature can be regarded as special cases d®esample using algorithm 2:

this general SIS algorithm. These special cases can be derived- [{xi, wi, —}i=,] = RESAMPLEx., wi}e]
from the SIS algorithm by an appropriate choice of importance
sampling density and/or modification of the resampling step.

Below, we present three particle filters proposed in the Iiteraturez) Auxiliary Sampling Importance Resampling FilteThe
and show how these may be derived from the SIS algorithm. TR&|R filter was introduced by Pitt and Shephard [34] as a variant

particle filters considered are of the standard SIR filter. This filter can be derived from the SIS
i) sampling importance resampling (SIR) filter; framework by introducing an importance densjty, i|z1.x),
ii) auxiliary sampling importance resampling (ASIR) filter;\which samples the pafi;, i/}, wherei’ refers to the index
iii) regularized particle filter (RPF). of the particle at; — 1.

1) Sampling Importance Resampling Filtefhe SIR filter By applying Bayes’ rule, a proportionality can be derived for
proposed in [17] is an MC method that can be applied to recurtxy, é|z1.x) as
sive Bayesian filtering problems. The assumptions required to
use the SIR filter are very weak. The state dynamics and mea- . .
surement functiong, (-, -) andhy(-, -) in (1) and (2), respec- :p(zk|xk)p(xk|z"Zlikﬂ)p(dzlik—l)
tively, need to be known, and it is required to be able to sample = p(zx|[xn)p(Xx X} 1)wi 1. (67)
realizations from the process noise distributionvaf ; and  The ASIR filter operates by obtaining a sample from the joint
from the prior. Finally, the likelihood functiop(zx|xx) needs  gensityp(xy, i|z1.;) and then omitting the indicesin the pair
to be available for pointwise evaluation (at least up to propoig, . ;) to produce a sampléx] }+, from the marginalized
tionality). The SIR algorithm can be easily derived from the Slgensity p(x;,|z1.1.). The importané:e density used to draw the
algorithm by an appropriate choice of i) the importance de@ample{xi, 1 is defined to satisfy the proportionality
sity, whereg(xy|x%,_;, z1.x) IS chosen to be the prior density ' ' ’ ; ; ;
p(xx|xi_,), and i) the resampling step, which is to be applied q(X, t|z1) o< p(zrlpi)p(Xelxg 1 Jwi_y (68)
at every time index. whereyt is some characterization ®f,, givenx’, ;. This could
The above choice of importance density implies that we nebg the mean, in which casei = E[x|xi ,] or a sample
samples fromp(x|xj, ). A samplex;, ~ p(xi|xj,_,) canbe i ~ p(x|x}_,). By writing
generated by first generating a process noise sawiple ~
pu(vi_1) and setting<}, = fi.(x},_,, vi_,), Wherep,(-) is the N
pdf of vi_. For this particular choice of importance density, i&hd defining

(X, ©|Z1:%) o<p(Zk X1 )P( Xk ©]Z1:5—1)

q(Xx;, ilz1:) = q(e|z1x)q(Xeli, 21:0) (69)

is evident that the weights are given by a(xxli, Z1a) 2 p(xrlxi_;) (70)
wh, o 1wy, P(Zk[XE)- (65) it follows from (68) that
However, noting that resampling is applied at every time index, q(i|z1.2) o p(zk|ui)wi_1- (71)

we havew: , = 1/N Vi; therefore P . . .
b =1/ The sample{x;, i/}}%, is then assigned a weight propor-

wj, o< pzx|X},)- (66) tional to the ratio of the right-hand side of (67) to (68)
The weights given by the proportionality in (66) are normalized 2l o (3 Ix? j
before the resampling stage. An iteration of the algorithm is then wi o(w;j_lp( ¢ k?p( 4 k_l) = p(zk|x,§) . (72
described by Algorithm 4. q(xy,, 7 |21.1.) p(ziluy )

As the importance sampling density for the SIR filter is inde- The algorithm then becomes that described by Algorithm 5.
pendent of measuremexy, the state space is explored without
any knowledge of the observations. Therefore, this filter can bgyorithm 5: Auxiliary Particle Filter
inefficient and is sensitive to outliers. Furthermore, as resav[[.;—xi wilNe ] = APA{xE_,, wi_ 1N 7]

S . . . . . . ks WEJSi=1 k—1» Wk—1Si=1> 2k
pling is applied at every iteration, this can result in rapid loss @f FOR i = 1. N,
diversity in particles. However, the SIR method does have the__ cajculate 1,
advantage that the importance weights are easily evaluated and_ calculate  wi = q(i|z1.1,) o p(zx|pd )wi_, .

that the importance density can be easily sampled. e END FOR
e Calculate total weight: t = SUM{wi } 12 ]

Algorithm 4: SIR Particle Filter e FOR¢ =1: N,
[k, wi ] = SIR{xy, wh 1Yo, 2] — Normalize:  wj, = t~uj
e FOR¢ =1: N, e END FOR

— Draw x}, ~ p(xx|x}_;) e Resample using algorithm 2:

— Calculate  w}, = p(zx|x}) —[{-, -, Lj}j\zl] = RESAMPLEx}, wj } ]
e END FOR e FORj =1. N, _
e Calculate total weight: t = SUN{w? v, — Draw x), ~ g¢(Xx]#, z1.1) = p(xx|x} ),
e FOR:=1: N, as in the SIR filter.

— Normalize:  wi =t twi — Assign weight w) using (72)
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e END FOR density and the corresponding regularized empirical representa-
e Calculate total weight: t = SUM{wi 11, ] tion in (73), which is defined as
e FORi = 1: N, ) ) 9
— Normalize: wi, = t~'wi MISE(p) = E [/ [p(xk|z1:4) — p(x|z1a)]” dxi | (75)
e END FOR

wheregp(-|-) denotes the approximation t@xy|z1.;) given by

the right-hand side of (73)In the special case of all the samples
having the same weight, the optimal choice of the kernel is the
Although unnecessary, the original ASIR filter as proposdgpanechnikov kernel [31]

in [34] consisted of one more step, namely, a resampling stage, Ny + 2 (1= |x[?), if |x] <1
to produce an i.i.d. samplgcy,, 7} 1%, with equal weights. Ko =4 2, ’ (76)
Compared with the SIR filter, the advantage of the ASIR filter 0, otherwise

is that it naturally generates points from the samplé at1, \y here,, is the volume of the unit hypersphere Rt . Fur-
which, conditioned on the current measurement, are most likelyarmore. when the underlying density is Gaussian with a unit

to be close to the true state. ASIR can be viewed as resampligjariance matrix, the optimal choice for the bandwidth is [31]
at the previous time step, based on some point estimgtesat b AN (et 77
characterizep(xy|x},_, ). If the process noise is small so that opt — 45 Ys (7
p(xx|x},_,) is well characterized by , then ASIR is often not Y ne1l/(netd)
so sensitive to outliers as SIR, and the weigljiare more even. A= 8 (ne +4) (2vm) 7] ' (78)
However, if the process noise is large, a single point does not
characterizey(xy|x._,) well, and ASIR resamples based on &
poor approximation op(x|x},_, ). In such scenarios, the useAlgorithm 6: Regularized Particle Filter
of ASIR then degrades performance. {3, wihis] = RPA{x}_, wi 4 ey, 7]

3) Regularized Particle Filter:Recall that resampling wase FOR i = 1: N,
suggested in Section V-B1 as a method to reduce the degen-— Draw x}, ~ g(xx|x%_;, zx)
eracy problem, which is prevalent in particle filters. However, it — Assign the particle a weight, wi,
was pointed out that resampling in turn introduced other prob-  according to (48)
lems and, in particular, the problem of loss of diversity among END FOR
the particles. This arises due to the fact that in the resampliagCalculate total weight: t = SUNI{wi } v ]
stage, samples are drawn from a discrete distribution rather tharFOR ; = 1: N,
a continuous one. If this problem is not addressed properly, it— Normalize: wi = t—lw;;
may lead to “particle collapse,” which is a severe case of samgleEND FOR
impoverishment where alV, particles occupy the same pointe Calculate j\’f;f using (51)

S

in the state space, giving a poor representation of the postegoig N.j; < Np

density. A modified particle filter known as the regularized par- — Calculate the empirical covariance
ticle filter (RPF) was proposed [31] as a potential solutiontothe  matrix S, of {xi, wi},
above problem. — Compute D, such that DD} = S,.
The RPF is identical to the SIR filter, except for the resam- _ Resample using algorithm 2:

pling stage. The RPF resamples from a continuous approximas. [{xi wi, —}: ] = RESAMPLExS, wi}: ]
tion of the posterior density(xx|z1.x), whereasthe SIRresam- __ FOR; = 1: N,
ples from the discrete approximation (64). Specifically, in the « praw ¢ ~ K from the Epanechnikov
RPF, samples are drawn from the approximation Kernel

N. * X;; = X}, + hopt Die’

p(XilZ1) & > wi Kn(xy — x}) (73) — END FOR

i=1 e END IF

where
1 X
Kn(x) = hne K (ﬁ) (74) Alhough the results of (76) and (77) and (78) are optimal only

in the special case of equally weighted particles and underlying

. ) . . Gaussian density, these results can still be used in the general
width (a scalar parametery,, is the dimension of the state . . ' . . .
o . . case to obtain a suboptimal filter. One iteration of the RPF is de-
vectorx, andwj, ¢ = 1, ..., N, are normalized weights. The

Lk . . . . cribed by Algorithm 6. The RPF only differs from the generic

iﬁzrtnel density is a symmetric probability density function Suc;?)]article filter described by Algorithm 3 as a result of the addi-
tion of the regularization steps when conducting the resampling.

/xK(x) dx = 0, / l|x||2 K (x) dx < oc. Note also that the calculation of the empirical covariance matrix

is the rescaled Kernel densif§(-), 2 > 0 is the Kernel band-

. L 7As observed by one of the anonymous reviewers, it is worth noting that the
The KernelK (-) and bandwidtth are chosen to minimize the e of the Kernel approximation become increasingly less appropriate as the

mean integrated square error (MISE) between the true postetiatensionality of the state increases.



ARULAMPALAM et al. TUTORIAL ON PARTICLE FILTERS 183

TABLE | = ' ' '
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THEARTICLE,
AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES
(AVERAGED OVER 100 MC RUNS)

201

Algorithm Proposal Section | Figures | RMSE 10k
Extended Kalman filter N/A IV-A 34 23.19
Approximate grid-Based Filter | N/A IV-B 5 6.09 sk
SIR Particle filter pxx|xi_y) V-B1 |6 5.54

Auxiliary Particle filter p(xx|xi_,) V-B2 |7 5.35 o
Regularised Particle filter plxi|xt_y) V-B3 |8 5.55

‘Likelihood’ Particle filter p(xilse)p(selze) | A 9 5.30

Sy is carried out prior to the resampling and is therefore a func
tion of both thex; andwy},. This is done since the accuracy of -15f
any estimate of a function of the distribution can only decreas
as a result of the resampling. If quantities such as the mean a

covariance of the samples are to be output, then these should 2, 2 2 2 s 6 76 8 % 1o
calculated prior to resampling. fme.k

By following the above procedure, we generate an i.i.@tig 1. Figure of the true values of the state as a function of for the
random sampléxi*}7s, drawn from (73). exemplar run.

In terms of complexity, the RPF is comparable with SIR since
it only requiresN, additional generations from the kerrf€l -)
at each time step. The RPF has the theoretic disadvantage tl
the samples are no longer guaranteed to asymtotically appra zof
imate those from the posterior. In practical scenarios, the RF
performance is better than the SIR in cases where sample ir "
poverishment is severe, for example, when the process noise

small.

T T T T T T

N0
VI. EXAMPLE

Here, we consider the following set of equations as an illus s} ]
trative example:

p(xn(xn—1) =NXn; fu(Xpn—1, k), Qr—1) (79) or

x3
plzrlxi) =N <Zk; 2—8, Rk) (80) , ‘ , , , , , , ,
) 10 20 0, 4 50 60 70 80 % 100
or equivalently fme.k
Xy = fk(kab k) + Vi1 (81) Fig. 2. Figure of the measurements of the states, shown in Fig. 1 for the
2 same exemplar run.
X3,
zZ, = 2—8 +ny (82)
The approximate grid-based method uses 50 states with cen-
where ] ters equally spaced dr-25, 25]. All the particle filters have 50
£ (xp_1, k) = Xkl 25%—1 + 8cos(1.2k) (83) Pparticles and employ resampling at every time st€p & N.,).

2 1+x7_, The auxiliary particle filter useg), ~ p(xx|xi_,). The regu-
and wherev,_; and n; are zero mean Gaussian randoniarized particle filter uses the kernel and bandwidth described in
variables with variance®,_; and Ry, respectively. We use Section V-B3.

Qw_1 = 10 andR;, = 1. This example has been analyzed To visualize the densities inferred by the approximate grid-

before in many publications [5], [17], [25]. based and patrticle filters, the total probability mass at any time
We consider the performance of the algorithms detailed i each of 50 equally spaced regionsfer25, 25] is shown as

Table I. In order to qualitatively gauge performance and dignages in Figs. 5-9. At any given time (and in any vertical slice

cuss resulting issues, we consider one exemplar run. In ordefiieough the image), darker regions represent higher probability

quantify performance, we use the traditional measure of p&han lighter regions. A graduated scale relating intensity to prob-

formance: the Root Mean Squared Error (RMSE). It shouRbility mass in a pixel is shown next to each image.

be noted that this measure of performance is not exceptionally

meaningful for this multimodal problem. However, it has beeft

used extensively in the literature and is included here for thatThe EKFs local linearization and Gaussian approxima-

reason and because it facilitates quantitative comparison. tion are not a sufficient description of the nonlinear and
For reference, the true states for the exemplar run are shoman-Gaussian nature of the example. Once the EKF cannot

in Fig. 1 and the measurements in Fig. 2. adequately approximate the bimodal nature of the underlying
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Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter

This example is low dimensional, and therefore, one would
expect that an approximate grid-based approach would perform
well. Fig. 5 shows this is indeed the case. The grid-based ap-
proximation is able to model the multimodality of the problem.

Using the approximate grid-based filter rather than an EKF
yields a marked reduction in RMS errors. A patrticle filter with
N, particles conduct®(V,) operations per iteration, whereas
an approximate grid-based filter carries 6tV ?) operations
with NV, cells. It is therefore surprising that the RMS errors for
the approximate grid are larger than those of the particle filter.
The authors suspect that this is an artifact of the grid being fixed;
the resolution of the algorithm is predefined, and the fixed posi-
tion of the grid points means that the grid points n&&6 con-
tribute significantly to the error when the true state is far from
these values.

Fig. 4. Evolution of the upper and low2e positions of the state as estimated

by the EKF (dotted) with the true state also shown (solid).

C. SIR Particle Filter
Using the prior distribution as the importance density is in

posterior, the Gaussian approximation fails—the EKF is prof@Me sense regarded as a standard SIR particle filter and, there-
to either choosing the “wrong” mode or just sitting on théore_, is an appropriate partlcl_e filter algorithm Wlth \_Nhlch_to
average between the modes. As a result of this inability R#9iN- As can be seen from Fig. 6, the SIR particle filter gives
adequately approximate the density, the linearization approf{Sa@PpPointing results with the low number of particles used here.
mation becomes poor. The speckled appearance of the figure is a result of sampling a

This can be seen from Fig. 3. The mean of the filter is rare|9W number of particles from the (broad) prior. It is an artifact

close to the true state. Were the density to be Gaussian, &fg-!ting from the inadequate amount of sampling.

would expect the state to be within two standard deviations of | '€ RMSE metric shows a marginal improvement over the
the mean approximately 95% of the time. From Fig. 4, it is e\gpprOX{mate .grld—based filter. To ach|e\{e smaller errors, one
ident that there are times when the distribution is sufficient U'O,' S|mp_ly increase the numper of particles, ,bUt herg, we will
broad to capture the true state in this region but that there |'nvest|gate the effect of u'smg'the alternative particle filter
also times when the filter becomes highly overconfident of a HH90rithms described up to this point.
ased estimate of the state. The implication of this is that itis ver N ] )
difficult to detect inconsistent EKF errors automatically onlind?- Auxiliary Particle Filter

The RMSE measure indicates that the EKF is the least accuOne way to reduce errors might be that the proposed par-
rate of the algorithms at approximating the posterior. The aficle positions are chosen badly. One might therefore think that
proximations made by the EKF are inappropriate in this exhoosing the proposed particles in a more intelligent manner
ample. would yield better results. An auxiliary particle filter would then
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Fig. 8. Image representing evolution of probability density for regularized

Fig. 6. Image representing evolution of probability density for SIR particlgarticle filter.

filter.
E. Regularized Particle Filter

Using the regularized particle filter results in a smoothing of
the approximation to the posterior. This is apparent from Fig. 8.
The speckle is reduced and the peaks broadened when compared
with the previous particle filters’ images.

The regularized particle filter gives very similar RMS errors
. tothe SIR particle filter. The regularization does not result in a
[ significant reduction in errors for this data set.

F T 1 i i & & 5 i

F. “Likelihood” Particle Filter

|

|

| All the aforementioned particle filters share the prior as a pro-
| posal density. For this example, much of the time, the likelihood
i ws IS far tighter than the prior. As a result, the posterior is closer
in similarity to the likelihood than to the prior. The importance

J ~density is an approximation to the posterior. Therefore, using
a better approximation based on the likelihood, rather than the
prior, can be expected to improve performance.

Fig. 9 shows that the use of such an importance density (see
the Appendix for details) yields a reduction in speckle and that
the peaks of the density are closer on average to the true state
¥han for any of the other particle filters.

The RMS errors are similar to those for the Auxiliary particle
filter.
seem to be an appropriate candidate replacement algorithm for
SIR. Here, we have), as a sample from(x|x}_,). G. Crucial Step in the Application of a Particle Filter

As shown by Fig. 7, for this example, the auxiliary particle The RMS errors indicate that in highly nonlinear environ-
filter performs well. There is arguably less speckle in Fig. ihents, a nonlinear filter such as an approximate grid-based filter
than in Fig. 6, and the probability mass appears to be betterparticle filter offers an improvement in performance over an
concentrated around the true state. However, one might thiBKF. This improvement results from approximating the density
this problem is not very well suited to an auxiliary particle filterather than the models.
since the prior is often much broader than the likelihood. WhenWhen using a particle filter, one can often expect and fre-
the prior is broad, those particles with a noise realization thgiently achieve an improvement in performance by using far
happens to have a high likelihood are resampled many timesore particles or alternatively by employing regularization or
There is no guarantee that other samples from the prior wilsing an auxiliary particle filter. For this example, a slight im-
also lie in the same region of the state space since only a singtevement in RMS errors is possible by using an importance
point is being used to characterize the filtered density for eadbnsity other tham(x;|x; ;). The authors assert that an im-
particle. portance density tuned to a particular problem will yield an ap-

The RMS errors are slightly reduced from those for SIR. propriate trade off between the number of particles and the com-

Fig. 7. Image representing evolution of probability density for auxiliar
particle filter.
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To keep the notation simple, throughout this Appendix=

= , | 1 (x3)2. For a uniform prior ors;, the densityp(sx|zx) can be
' | . i written by Bayes’ rule as
i i [ ] H 18
f I I p(zklsk), sk >0
el | ' o p(sk|zr) o { : (84)
0, otherwise.

We can then sample, ~ p(si|zx) [sampless;, are repeat-
edly drawn fromp(sg|zx) o p(zx|sk) until one is drawn such
' . thatp(si|zi) > 0, i.e., one such thay, > 0]. Then,p(xs|st,)
can be chosen to be a pair of delta functions

wl | i F 1 1z 5(Xk—\/s_§;)+5(xk+\/;i)
5 .

. | | plxilsl) =

[ W
=]
=]
i

(85)

= LI . This can then be used to form a “Likelihood” based impor-
: X - tance density that sampleg conditional onz, and indepen-
dently fromx} _;

Fig. 9. Image representing evolution of probability density for “likelihood” i
particle filter. q(Xk|X)_1, Z1:) X p(Xr|sk)p(Sk|zk). (86)

The weight of the sample can be calculated according to (47)
putational expense necessary for each particle, giving the best ; i
qualitative performance with affordable computational effort. wh o wi_lp(zk|?<k)f’(xk(xk—l) @87)

The crucial point to convey is that all the refinements of (%}, (X5, 1, |Z1:8)
the patrticle filter assume that the choice of importance density ; i
has already been made. Choosing the importance density to be :wi_lp(zkh’“)p(x’“(xk—l)
well suited to a given application requires careful thought. The p(Xy[s3)p(sy|2k)
choice made is crucial. - p(xi|z)p(za)p(x (xE_)
=Wy 7 i i i ; (89)
p(x3)p(xX; I8}, )p(sy |1Zx)

(88)

VII. CONCLUSIONS o )
Now, p(x}|s}) = 1/2, p(zs) andp(x},) are constant; there-

For a particular problem, if the assumptions of the Kalmaiore, they disappear, leaving
filter or grid-based filters hold, then no other algorithm can out-

perform them. However, in a variety of real scenarios, the as- w), o wiflp(xi|xifl)M~ (90)
sumptions do not hold, and approximate techniques must be em- p(s|zx)
ployed.

_ _ Now, the ratio ofp(x¢ |z ) to p(s, |zx) needs careful consid-
The EKF apprommate_s the models used for the dyna_mlcs adsion. Although the values gf(xL|z;,) andp(si |z;) might
measurement process in order to be able to approximate fa&isially thought to be proportional, they are probability den-
probability density by a Gaussian. Approximate grid-based filias defined with respect to a different measure (i.e., a dif-
ters approximate the continuous state space as a set of disgigle: harameterization of the space). Sipee, |z.) integrates
regions. This n_ep_essnates the p_redeflnmon of Fhese reglonS_@gqmity overdx;, while p(si|z;) integrates to unity ovedsy,
becomes prohibitively computationally expensive when dealinge ratig of the probability densities is then proportional to the
with high-dimensional state spaces [3]. Particle filtering approjs erse of the ratio of the lengthsx;. and ds;.. The ratio of

imates the (_jensity directly as a finit_e number of samples.ﬁxuzk) to p(si |z, is the determinant of the Jacobian of the
number of different types of particle filter exist, and some havug, - «tormation froms;, t0 x4,

been shown to outperform others when used for particular ap-

plications. However, when designing a patrticle filter for a par- P(Xi|zk) dsp. — 2%, (91)

ticular application, it is the choice of importance density that is p(s}.|Zx) dxy, '

critical. An expression for the weight is then forthcoming:
APPENDIX i oc (e EPRE ot (.

7
IMPORTANCE DENSITY FOR“L IKELIHOOD” PARTICLE FILTER p(5k|zk) 92)

This Appendix describes the importance density for the “like- The particle filter that results from this sampling procedure is
lihood” particle filter, which is intended to illustrate the cruciabiven in Algorithm 7.
nature of the choice of importance density in a particle filter. Therefore, rather than draw samples from the state evolu-
This importance density is not intended to be generically applien distribution and then weight them according to their likeli-
cable but to be one chosen to work well for the specific problehood, samples are drawn from the likelihood and then assigned
and parameters described in Section VI. weights on the basis of the state evolution distribution.
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(11]

Alg‘orith‘m 7. “Likelihoqd” Particle Filter
[{x,, wi.}iin] = LPR[{x}_, wi_ 1oy, 2]

(12]

(23]

e FOR: = 1: N,
— REPEAT

« Draw si, ~ p(si|za) o p(zx|si)

(14]

— UNTILsi, >0

— IF U0, 1] > 1/2

* Xp =

Z [15]
Sk

— ELSE

— END
—wj, = wy_ p(X} X1 )X},

[16]

IF
(17]

END FOR

e Calculate total weight:

t = SUN{wj } 7] [18]

e FOR: =1: N,

[19]

— Normalize:  wi = ¢ twi
e END FOR
e Calculate  N.; using (51) [20]

IF N.sr < Np

— Resample using algorithm 2:
* [{xq, wp,
e END

21]
—}N- ] = RESAMPLEx!,, wi }Y+ ]

IF [22]

(23]

[24]
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