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Abstract. This paper proposes an approach for robust real-time map-based mobile robot dynamic localization.
This is a real need for most navigation algorithms which do not consider that the vehicle stops to estimate its pose.
Moreover, navigating in real cluttered environments requires the use of fast and robust pose estimators. The most
used approach for map-based pose estimation is the Extended Kalman Filter. However, this approach is not robust
and its use in real-time may be jeopardized for large environment maps. We propose a robust Weighted Least-Squares
pose estimator which satisfies the robustness and real-time requirements for this problem. The robust approach has
demonstrated superior performance in experimental comparison carried-out in a real cluttered environment.

1 Introduction

Map-based mobile robot localization has been extensively studied during the last decade [1][2][3], with a
growing interest on simultaneous map-building and localization [4][5]. In an autonomous robot, the local-
ization module is responsible for providing an estimate of the robot pose z = (z,y,8) for other important
modules like navigation and task planner. Such an estimate is continuously updated by dead-reckoning,
which is a relative pose estimation approach. However, as the uncertainty associated to dead-reckoning
grows without bounds when the robot moves, it becomes necessary to perform pose estimation using an
absolute approach. Map-based absolute localization approaches are suitable for autonomous mobile robots
operating in indoor environments. In such environments, GPS cannot be employed and the use of artificial
landmarks increases the installation and maintenance costs. However, the robot must be equipped with an
appropriate exteroceptive sensor, usually a laser rangefinder.

Nowadays, in the research community, the most common map-based approaches for robot localization
and navigation employ occupancy grids [6] or geometrical features [1]. With occupancy grids, the localization
module computes the conditional probability of the robot to be in each cell of the three-dimensional z-y-60
space of robot pose given the current sensor measurements. The estimated pose is the center of the cell
corresponding to the largest probability. However, given the computing time and memory requirements for
occupancy grid-based localization, its use in real-time is possible if some mechanisms like sensor data filtering
and cell selection are applied [6].

In pose estimation using geometrical features we have a global environment map M that looks like a
2-D top-view representation of the navigating environment. The map is composed of geometrical features
which correspond to some structures usually found in indoor environments. The commonly used features
are lines, representing walls and sides of polygonal obstacles, and points, corresponding to vertical edges or
small obstacles. In order to estimate the robot pose, we have two main alternatives: matching local sensor
measurements to global map line features [3], or matching a local map M’ built from sensor measurements
to global map features [1] [2]. The main interest on using a local map is that we can employ different types
of features. It results in a more complete environment model and reduces the probability of the robot to get
lost, if the number of lines is not sufficient to estimate the robot pose. Thus, this is why we have chosen to
work with the local map approach.
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We can point out that little attention has been given for real-time aspects of mobile robot localization.
In this paper, we are interested on theoretical and practical aspects of real-time dynamic localization. In the
context of dynamic localization, the pose estimation is performed during robot motion. It does not mean that
other researchers have not taken into account for robot motion during data acquisition and pose update.
However, we have not found references that directly treat the problems related to localization in motion. In
[7], we presented real range images which are largely deformed when acquired with robot in motion. Such
deformation results in false matches and important errors in localization. In this paper we present a dynamic
localization architecture which incorporates mechanisms for real-time sensor data acquisition, temporary
data storage and motion compensation.

The theoretical foundations of this research are related to robustness of the map-based pose estimator. We
are interested on fast pose computation and on robustness with respect to false correspondences, which often
occurs in cluttered environments. The most used approach for pose estimation is the Extended Kalman Filter
(EKF) [8][9]. However, the filter formulation relies on some assumptions which are not always verified in
practice: (i) the uncertainties are supposed to follow a Gaussian distribution and (ii) the measurement model
is approximated by its first order Taylor expansion. Alternative approaches rely on iterated optimization.
These approaches estimate the robot pose by matching scan points to map points [10] or lines [11]. The
simultaneous use of geometrical features as lines and points in a non-iterated Weighted Least-Squares (WLS')
framework has been introduced in our previous papers [7][12]. This paper presents a new robust iterated
formulation of the WLS which performs very well and is readily applicable for real-time pose estimation.
The same algorithm also provides an estimate of the uncertainties related to the pose estimate.

This paper is organized as follows. The real-time architecture for dynamic localization is discussed in
Section 2. Such an architecture allows the robot to build local maps which are consistent with the environment
even when the robot is moving. Pose estimation using the FEKF and WLS algorithms is briefly discussed
in Section 3. Section 4 presents our new robust formulation of the WLS pose estimator. The experimental
evaluation of the pose estimators is presented in Section 5.

2 The system architecture for dynamic localization

The main difference between static and dynamic localization is that for the last case the sensor data ac-
quisition and pose computing times can deteriorate the quality of the pose estimation results. In this work
we describe the architecture of Figure 1, which employes some mechanisms (shown in dark gray blocks) to
deal with such problems. The robot pose estimate Z(t) is updated every 5 ms by integrating the discrete
kinematics model from the initial state Z(t — 5ms) and using the current encoders measurements q(t) and
q(t). The current pose estimate Z(t) is then returned to the pose queue which is a circular data structure
that allows to keep in memory the pose estimates obtained during the last 5 seconds. A similar queue exists
for the encoders data. At any time, a past reading can be recovered from these queues. In order to guarantee
mutual exclusion, the access to each queue is controlled by atomic macros.

As the robot moves, the pose estimate provided by odometry becomes unreliable. Thus, it is necessary
to correct the robot pose from the map-based localization method. This is done periodically, when the task
responsible for global pose estimation becomes active. At this time, this task waits for the next available
range image, whose end-of-acquisition occurs at time ¢. From this, the following steps are executed:

1. Motion compensation and bias correction: In this work, the laser rangefinder used for building local
maps provides range images every 125 ms. The time interval corresponding to a complete scan (270°)
is approximately 93 ms. Considering translational and rotational speeds of 50 m/s and 30 °/s, during a
scan, the robot may perform a displacement of 4.63 ¢m and a rotation of 2.79°. In [7] we have presented
some range images which are largely deformed with such robot speeds. Thus, a range image correction
algorithm is used to preserve the accuracy of local maps [7]. Moreover, after motion correction, range
bias is compensated by using an identified polynomial function. Previous experiments have shown that
this bias may be close to 20 c¢m for an obstacle located at 5 m;

2. Local map building: A local map M’(t) composed of features representing the observed obstacles is built
from the corrected scan image. These features are lines, extracted using a new segmentation algorithm
[13] and points. They correspond to the ends of lines which are also breakpoints, i.e. points corresponding
to large discontinuities in the range image. The line extraction algorithm evaluated in [13] is fast enough
for real-time use;
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Fig. 1. Simplified block diagram of the map-based dynamic pose estimation system.

3. Map matching: The local map M'(t) is matched against the global environment map M(t), resulting in
a set of corresponding geometrical features. The correspondences satisfy a maximum threshold on the
Mahalanobis distance, which takes into account the estimate Z(t), recovered from the pose queue. This
procedure results in a set of N feature correspondences. The nt? correspondence is represented by means
of the feature parameters vectors f,, and f;

4. Pose estimation: From the corresponding features, an estimate Zp,(t) of the robot pose at time ¢ is
obtained at time t,, (t,, > t) by using a pose estimator. The pose estimate minimizes some statistical
or numerical distance between the corresponding features obtained from the map matching phase. The
pose estimators are discussed in Sections 3 and 4;

5. Pose update: The new pose estimate Z,,(t), computed in step 4, is referred to the time ¢. Considering
the elapsed time t,, — t for all processing described above, that may be in the order of some hundred
milliseconds, the robot may be displaced of some decimeters and rotated of some degrees. Thus, the new
pose estimate no more corresponds to the current time. That is why a pose time update is required. For
this purpose, all encoders data stored in the queue from t to t,, are recovered to integrate the discrete
kinematics model from the initial state Z,,(¢) until the actual time. This phase results in the actual pose
estimate Z(t,,) which is updated in the pose queue. It will be continuously updated by odometry until
the next map-based localization cycle.

3 Pose estimation from geometrical map correspondences

In this work, the global and local maps are attached to the reference frames (O, X,Y) and (O', X', )"),
respectively. Let (p;,,p),) be the coordinates of a static point in (O',X",)"), and (pg,py) its coordinates in
(O, X,Y). These coordinates are related by

() =20 {(,)- ()} wmor= (5506, 26) 2

3.1 Kalman filtering

The most used approach for map-based pose estimation is the Extended Kalman Filter (EKF) [8][9]. The
formulation of the mobile robot localization problem using the EKF is elegant and allows to fuse multisensory
data [5]. In a map-based mobile robot localization system, this filter embodies the prediction and estimation



phases. In the prediction phase, which corresponds to the odometric equations, the robot pose estimate Z(t)
is continuously updated by odometry, as well as its associated covariance matrix Pz (t).

When new measurements become available at time ¢, which in this case is a set of N feature corre-
spondences, the EKF computes an estimate #,,(t) based on the following measurement model for the nt"
correspondence: f, = h(z(t),f,) + wy(t),with w,,(t) representing the measurement noise which embodies
feature and model uncertainties. It is commonly assumed that w,, is a Gaussian noise with E{w,} = 0 and
E{w, -wl} =R,.

From the different formulations of the EKF, the most used for pose estimation is the batch EKF. The
batch EKF integrates the N measurements in only one step by using the following formulation [14]:

A

v =f"—h(z(t),f), S =Vh-P;(t)- Vh” + R, (innovation v and its covariance matrix S)
K="P;(t)-VhT-S 1 (Kalman filter gain) (2)
Zm(t)=2(t)+K-v, Pz (t)=Ps(t)— K-S K. (estimate Z,, and its covariance matrix Pj, )

In the above equations, all measurements are stacked in high dimensional structures. S is composed
of two terms: Vh - P;(t) - Vh”, representing the covariance term given by the pose uncertainty with
Vh”= (0h”(2(t),£1)/0%,...,0h" (2(t),fn)/0Z), and R, which is the term given by the feature uncertainties.
R =diag(R,,--- ,Rn) with

oh oh™

R, =Pg + 3_fnPf" ot (3)

3.2 Weighted Least-Squares

In previous papers [7][12], we have introduced a Weighted Least-Squares (WLS) optimal pose estimator
from local and global feature correspondences. The WLS algorithm embodies simultaneously line to line
and point to point correspondences and gives the pose estimate that better match set of features given
a weighted residual cost function. This algorithm also provides a consistent estimation of the associated
covariance matrix Pz . The pose estimate is computed in a non-iterated manner by solving a set of non-
linear equations.

The estimation of the robot pose using simultaneously lines and points is achieved by changing the
features representation to a unified form. A point is represented by £ =(x,, yp)T which are its coordinates in
the frame X'). A line is represented by f =(z;,1;)” which are the coordinates of the point on the line that
is the closest to the origin of XY. From the classical polar representation (p,«), we have z; = p - cos(a) and
Yy = p - sin(a).

The above definitions are equivalent for a given feature vector f’ in the X')' coordinate frame. Using
this unified representation, we can show that the global to local feature parameter transformation function
h(z,f) is given by

h(z,f) =R(0) - (f —E-t), with t = (z,4)” and E = <‘f b‘;) . (4)

The entries of the E matrix depend on the global feature type : a = b = 1 and ¢ = 0 for a point, and
a = cos(a), b =sin(a) and ¢ = a - b for a line. The WLS algorithm computes the pose estimate Z,, as the
that minimizes the weighted criterion

N
T@) =Y - lleall”, (5)

with r,, = f — h(2,f,) being the n'" residual distances between the f’ local feature and the corresponding
local representation h(z,f,) of the global feature f,. p, is a positive scalar factor that weight the nt”
correspondence.

We can show that J(Z) is a non-linear non-convex criterion. Thus, in order to minimize J(Z), the procedure
adopted consists in finding all local minima Z*, compute their associated value of J and choose as pose
estimate Z the Z*corresponding to the J(Z*) closest to zero. In doing so, all local minima of J(Z) satisfy the
following set of equations:

0J(z) 0J(z) 0J(z)
or 0y  9p =0 (©)




This results in the following system of equations:

Mi-N3=q, B -(r+SNT§)=o0, (7)
T 5 .
with 8 = (cos(f) sin(d) ), and
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In the above equations, the variables z, and y, (resp. z,, and y,,) are the components of the f, (resp.
f)) feature parameter vector. From egs. (7) we obtain
AT o AT
B B+B ¢=0, (10)

with & = SNTM~'N and ¢ = r + SNTM . We can verify that & = (¢ — r)N, and that NTM~'N is a
symmetric matrix since M is also symmetric. Let the entries of @ and ¢ be referred to as

[ P11 D12 (<
Sp_(‘ﬁm@m)’ C_<C;>'

Thus, NTM~'N being symmetric and given the form of matrix S, we have &;; = —&,,. With this simple
relation, further development of eq. (10) results in

- D10+
®11 cos(20) + (127221) n(20) + ¢, cos(B) + ¢, sin(f) = 0. (11)
Maple a commercial symbolic mathematics software produced by Waterloo Maple, Inc., computes four
roots 0 ,i=1,...,4, for eq. (11). These solutions are the rotation components of the local minima of .J,

and candidate solutions to @. The f:f corresponding to each 9: is obtained from eq. (7) and given by
t/=M""(NB; +a), (12)
N ~ n T N N
with 3; = (cos(6;) sin(f;)) . Thus, each 2} = ((t;),60;)" corresponds to a local minimum of J and satisfies
eq. (6). As mentioned before, the optimal parameters t and 6 are found by evaluating J (2 ) for each solution
z} and choosing Z,, as the z} minimizing J. In doing so, the minimization of J is achleved and the estimate
Zm is optimal in the weighted least-squares sense.
The associated covariance matrix P, () of Z,, (t) is estimated by propagating the uncertainties associated

with each variable r,,, f,, and ], to the pose estimates Z,,. This is done by applying the covariance propagation
methodology described in [15]. From the mathematical development reported in [15], we have

og -t og -t
P;, = <62m> (Ap + Ag + Agr) - <62m> ) (13)
with g =0.J/0%y, and
N N
_ og og T 3g _ og Bg
Ae = 2 or,, P o, Z Pe.gp, A= 2 ot P, - of!

The feature covariance matrices Pg, and Pf_”L are provided as inputs, and P, is the estimated residual
covariance matrix. We use the weighted sample covariance as an estimate of P,. It is computed by P, =
Zg LB (ry -1 )/Zn 1 Hp- 0g /0%, is the Hessian of J with respect to Z,,. This matrix is always non-
singular on the minimum %,, of the cost function. Its reciprocal always exists and is used to compute P5,

Remark 1 The WLS provides the optimal pose estimate that minimizes the weighted residual error between
the corresponding features after global to local transformation. EKF computes an approrimated sub-optimal
estimate that takes into account all system uncertainties. In the WLS, the correspondence weights may be
computed in order to take into account the feature uncertainties.

Remark 2 It must be pointed out that the WLS algorithm can only give pose estimates if the feature corre-
spondences allow a solution. In such a case, a simple test on the rank of the M matriz is sufficient for fault
detection.
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Fig.2. WLS and EKF computing times in function of the number of corresponding features.

3.3 Complexity and computing time requirements

In the EKF, the computing of K involves the inversion of the S matrix, which has dimension 2N x 2N.
Being S a non-diagonal matrix, it results in an O(N?®) computing complexity for the inverse of S [16].
Thus the EKF complexity is O(N?). Without the need of inverting matrices whose size depends of the
number of correspondences, the WLS implementation presents an O(N) polynomial complexity. So, this
property allows the WLS to give pose estimates faster than the FKF, which is verified even for a few
number of corresponding features. In Figure 2, the computing time of the C' language implementations of
these algorithms was measured in a real-time kernel, the RTX produced by Venturcom Inc, running on a
PII 333 MHz CPU. The corresponding features were randomly generated. For 50 corresponding features,
the WLS is two order of magnitude faster than the FKF. This results in a faster pose estimation, even with
large environment maps.

4 Robust pose estimation from geometrical map correspondences

In order to achieve a robust pose estimation algorithm, the correspondence weights p,, of the WLS algorithm
must be computed using robust weighting functions. It is well known that the Mahalanobis distance is not
a robust correspondence measure. Furthermore, in order to have a consistent uncertainty measure, it is a
common practice in modelling odometry to take into account for encoders and model uncertainties in the
updating of the covariance matrix Pz. As non-systematic errors are not easy to model, the uncertainties
associated to the model approximation are increased to obtain a consistent estimate of Pz. It means that
even if the non-systematic errors are not very important for some parts of robot trajectory, Pz may be
larger than the real pose error covariance. Thus, if the current pose estimate provided by odometry has a
large uncertainty P, the Mahalanobis distance tends to be smaller and some extra correspondences may be
confirmed. These correspondences present large residuals, which can be seen as outliers.

In this section we present a robust version of the WLS algorithm that can reject correspondences with
large residuals. We have chosen the following weighting function:

[[n|l

W, = exp(— ), with n = —=2.6 - median(||r1]|, ..., ||lr~|])/ In(0.1). (14)

In eq. (14), r, = f/ — h(z,f,) is the n’* residual in the unified feature representation for the current
pose estimate Z and 7 determines the acceptation window width. The robust WLS has an iterated form,
where for each iteration the weights are updated as (14). For the first iteration, all weights are equal to 1.
In this way, the robust WLS first computes a pose estimate which may be better then the Z provided by
odometry. In our implementation, the maximum number of iterations is fixed at 5. During the iterations,
only the pose estimate is computed. Its associated covariance matrix is computed using the weights of the
last iteration. This allows to obtain a faster algorithm. If we use the robust Tukey’s biweight function [17],
we would obtain an iterated M-estimator. However, in order to converge, the M-estimator may require a
large number of iterations. In our experiments, we have used eq. (14) that has presented good performance
in few iterations.
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Fig.3. The global map of the experimental environment. The superimposed scans are shown to illustrate
how cluttered the environment is.

5 Experimental evaluation

The dynamic localization architecture of Figure 1 was implemented in our mobile robot Omni equipped
with a personal computer based on a PII 333 MHz CPU. The real-time extension RTX® for Windows NT
4.0 fills the real-time requirements of this project. Interprocess communication objects allow communication
between hard real-time tasks running on RTX (i.e. the dynamic localization architecture) and soft real-time
tasks running on Windows NT (i.e. user interface and disk storage of data). With this system, it is allowed
to acquire sensor data for off-line evaluation.

The global map used for this experimental evaluation (Figure 3) was hand built from a set of superimposed
range images acquired in a real cluttered environment. The reference robot poses are represented by small
squares. In this experiment, there were acquired 95 range images with the robot in motion during 95 seconds.
Some indexes associated with the measured reference poses are also shown. The reference poses are provided
by fusing a high precision laser gyrometer and encoders data.

In this section, we compare the performance of two pose estimators: the EKF (Section 3.1) and the robust
WLS (Section 4). The unified feature representation was used for the two algorithms. The performance
measures are the mean absolute deviations €,, €, and eg of the respective x, y and 6 pose estimates with
respect to the reference poses.

We have performed three experiments with these data, denoted as experiments A, B and C. In order to
allow a comparison of the EKF with the robust WLS in the same conditions, its evaluation was carried-out
off-line but using the real data acquired for this experiment, i.e. laser range images, encoders readings and
reference poses at time ¢. Thus, we would expect the same results as if the algorithms were running on-line.
The three experiments are described below:

— Ezperiment A: in this experiment, z(t) is provided by odometry only, which is far less precise than the
reference pose. Z(t) is not simulated, but computed from the real encoders measures acquired during the
experiment. This experiment allows to evaluate the performance of the different approaches for robots
that are not equipped with an expensive high-precision gyrometer;

3 RTX is manufactured by Venturcom Inc.



Table 1. Experimental performance measures for the robust WLS and EKF algorithms
robust WLS batch EKF

e | Ey | e Ea | Ey | e

Experiment A| 6.88 ¢cm| 5.77 cm| 1.26° 7.54 cm 821 ¢cm | 1.06°

Ezperiment B| 8.82 ¢cm| 9.43 cm| 1.47°| 12.15¢m| 1523 cm| 1.35°

Experiment C'| 8.61 cm| 7.58 cm| 1.13°| 11.63 ¢m| 12.62 cm| 1.22°

— Ezxperiment B: in this experiment, Z(t) is simulated as being the reference pose contaminated with ad-
ditive Gaussian noise with covariance matrix P,, = diag ((0.25m)2 (0.25m)* (3°)* ). It must be pointed
out that such uncertainty is larger than the one of the experiment A. This experiment evaluates the
robustness of the different approaches when the provided odometric pose estimate Z(t) is not accurate;

— Ezperiment C': in this experiment, Z(#) is simulated as being the reference pose perturbed by two random
noises: one Gaussian noise with covariance matrix P,, = diag ((0.15m)2 (O.l{’)m)2 (2°)2), and another
noise with uniform distribution in the range [—0.3m, 0.3m] for #(¢) and §(¢), and in the range [—3°, 3°]
for ?)(t) The Gaussian noise represents the uncertainty propagated by odometry, and the uniform noise
represents wheel slippage or other non-Gaussian error sources. The map matching and pose estimation
procedures have knowledge of the Gaussian effect only, i.e. P5(t) = P,,. This experiment evaluates the
robustness of the different approaches when the errors on z(¢) do not follow a Gaussian distribution.

Table 1 presents the performance measures of the algorithms for the three experiments. The best per-
formances for each experiment are in bold font. As a result, gy is almost the same for the two algorithms.
However, the robust WLS gave better results for z and y estimation in all experiments. The results of the
robust WLS are still better for experiments B and C. In these experiments, the theoretical foundations on
which the EKF is based are not verified. In experiment B, Z(t) is far from the true pose, and truncation
errors caused by the linearization of the measurement model jeopardize the EKF performance. In experiment
C, the uncertainties on Z(t) are not Gaussian.

Figure 4 shows the pose estimation errors with respect to the reference poses for the experiments A, B,
and C. These errors are computed . The estimated [—o, o] intervals are represented in gray, with o being the
estimated standard-deviation obtained from P _ (t). Based on the [—o, o] intervals, we can see that the WLS
estimated uncertainties are generally consistent with respect to the observed errors. Thus, an automatic pose
supervisor may take decisions on the acceptance or not of a new pose estimate based on statistical tests on
the [—30, 30] limits.

In some cases the number of matched features reached 50. According to Figure 2, for these cases, the
required computing times are on about 100 ms for the EKF, and 1 ms for one iteration of the robust
WLS. It means that using the WLS, pose estimation can be performed at a superior frequency and with a
deterministic behaviour appropriate for real-time design.

The interested reader can find further experimental results for absolute pose estimation in [7], and for
relative motion estimation in [12].

6 Conclusion

This article presented the design of a dynamic localization architecture for real-time mobile robot localization.
Design details were discussed and important factors as computing time complexity were taken into account.
In an experimental evaluation, two algorithms for geometrical map-based pose estimation were compared: the
classical EKF and our proposed WLS approach. Under normal conditions, i.e. no wheel slippage and accurate
odometry, the two approaches present similar results. However, the performance of the WLS algorithm was
less affected by simulated non-systematic odometric errors than the EKF. It indicates, at our point of view,
that the WLS is more robust than the EKF. Moreover, the small computing time of the WLS, even for
a large number of feature correspondences, is an important criterion for real-time localization. An other
important aspect of the WLS is that robustness mechanisms well developed in robust statistics [17] may be
directly adapted for mobile robot localization.

The authors believe that the same architecture can be used as a subset of a simultaneous localization
and mapping (SLAM) system. In such an application, the time-critical phase is the pose estimation. After
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Fig.4. Results for experiment A: (a) robust WLS and (b) EKF;
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and (d) EKF; Results for experiment C: (e) robust WLS and (f) EKF.

Results for experiment B: (c) robust WLS



pose estimation, map building would be performed using the classical EKF for global map update using an
augmented state vector which incorporates the consistent pose estimate and the global map features [18].
The use of the consistent pose estimate reduces the linearization effects of the measurement function on map
consistency in SLAM.
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