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RESUMO

Esse artigo apresenta uma técnica de cartografia local
baseada na fusão de características extraídas de imagens
fornecidas porlaser rangefindere visão monocular. O
método proposto é parte de um sistema de cartografia e lo-
calização simultâneos implantado em um robô móvel real.
A partir de imagens dorangefinder, algumas estruturas do
ambiente local são observadas sob a forma de características
geométricas, as quais são usadas para construir uma primeira
instância do mapa local. Características da imagem de vídeo
são usadas com observações complementares das caracterís-
ticas da primeira instância de mapa local, que é atualizado
levando a uma maior precisão na representação espacial de
estruturas do ambiente. Incertezas nos parâmetros das car-
acterísticas são também estimadas por meio de ferramentas
estatísticas. Exemplos obtidos a partir de dados reais são ap-
resentados. O desempenho satisfatório dessa abordagem tem
contribuido para a obtenção de resultados consistentes do um
sistema de cartografia e localização simultâneos.

PALAVRAS-CHAVE : Cartografia local de ambientes, fusão
de dados multisensoriais, extração de características, mode-
lamento de incertezas, robôs móveis.

ABSTRACT

This paper presents a local mapping technique based on the
fusion of laser rangefinder and monocular vision images.
This system is currently used as part of a concurrent localiza-

tion and environment mapping system in a real mobile robot.
From laser rangefinder images, some local map structures are
observed as geometric features and a first instance of local
map is built. Video image features are used as complimen-
tary observations of the previous local map to improve its
accuracy. Feature uncertainty is also estimated using statisti-
cal techniques. The paper presents examples obtained from
real data only. The satisfactory performance of this approach
has lead to consistent results as part of a simultaneous local-
ization and map building system.

KEYWORKS : Local environment mapping, multisensor data
fusion, feature extraction, uncertainty modeling, mobile
robotics.

1 INTRODUCTION

Concurrent Mapping and Localization (CML) is an impor-
tant and difficult research topic in robotics. InCML, ex-
teroceptive sensor data gathered at a given time is used to
build a local environment representation, the local map, rel-
ative to the robot sensory system reference frame. In the
context of geometrical maps (Estrada et al., 2005), the local
map is used for robot pose estimation and global map updat-
ing. In this process, any error in local mapping is propagated
to pose estimation and map updating (Borges, 2002). Thus,
the construction of local environment maps is a primary task
for simultaneous localization and environment mapping sys-
tems in mobile robotics. For instance, Arraset al. (Arras
et al., 2001) utilize environmental geometrical features cap-
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tured by a 2D laser rangefinder and a video camera for pose
estimation of a mobile robot. A similar approach has been
followed by Neiraet al. (Neira et al., 1999), but using a
3D rangefinder. However, when exploring complimentary or
multiple informations about environment structures captured
by different sensors, more accuracy in robot positioning can
be obtained. In (Lallement et al., 1998), the authors have fol-
lowed this direction, and applied data fusion techniques ina
robot equipped with 2D laser rangefinder and video camera
for detection of local environment corners.

This paper describes a geometrical local mapping strategy
based on the fusion of 2D laser rangefinder and video camera
images. This system is the basis of the local mapping module
of a successful simultaneous localization and global environ-
ment mapping strategy presented previously in (Borges and
Aldon, 2004a)(Borges and Aldon, 2002), and is described in
more detail in this paper. It differs from most approaches
by the use of more than one map structures. Map structures
are more complex than low-level sensor features, such that
used in (Arras et al., 2001), being useful in representing most
structures found in indoor environments. Its reduced com-
puting time has made this strategy a strong component in the
navigation system of a mobile platform, the Omni robot.

The paper is organized as follows. Local map structures are
presented in section 2. The multisensory system of Omni
robot is presented in section 3, where calibration details are
described. Section 4 described the procedures used for local
map building, followed by experimental results in section 5.
The conclusions are presented in section 6.

2 REPRESENTATION OF LOCAL MAPS

In most works on indoor environment modeling, map struc-
tures are given by 2-D geometrical primitives: infinite lines,
represented in polar parametric forml = (ρ, α)T , and points,
given by their Cartesian coordinatesp = (x, y). These prim-
itives are supposed to be perturbed by zero mean Gaussian
noise, with covariance matricesΛl and Λp associated tol
andp, respectively. In this work, extended map structures
using other attributes make them more complex and suitable
for indoor environment representation. The map structures,
shown in Fig. 1, give higher-level identity to map compo-
nents. These structures are:

• Semiplanescorrespond to walls and other planar obsta-
cles. They are represented by (i) an infinite linel, (ii)
two end-points and (iii) one flag indicating the visibility
side of the structure;

• Edgescorrespond to extremities of walls. They are rep-
resented by a pointp, and the associated semiplane in-
dex is kept for record;

• Cornerscorrespond to the intersection of two walls or
two consecutive planar faces. They are represented by a

pointp, and the associated semiplanes indexes are kept
for record;

• Photometric edgescorrespond to artifacts observed as
vertical lines in video images, and that correspond nei-
ther toedgesnor tocorners. They are represented by a
pointp.

The above structures allow a rich representation for indoor
environments, and the following relations apply to them: (i)
everyedgeis associated to asemiplane, i.e., the point prim-
itive of theedgeis over the line primitive of thesemiplane;
(ii) every corner is associated to two adjacentsemiplanes,
i.e., the point primitive of thecorner is on the intersection
of the lines of the associatedsemiplanes. Such relations are
used as prior information to constrain map updating. Fur-
thermore, given the map structures uncertainty, constraints
should be satisfied in the stochastic sense: the uncertainty
of the constrained features should also be taken into account.
For instance, anedgemight not be exactly over the line of the
associatedsemiplane. It may be close to thesemiplane, but at
a distance which should compatible with the uncertainties of
both structures. The propagation of such constraints during
environment mapping process has been shown to minimize
map divergence (Borges and Aldon, 2002).

The symbols used for the structures in the maps are as fol-
lows: ( ) for semiplanes, ( ) for edges, ( ) for cor-
ners, ( ) for photometric edges.

3 MULTISENSOR SYSTEM

3.1 Description and geometry

Omni is a mobile platform on which a localization and en-
vironment mapping architecture has been implemented, al-
lowing it to navigate in indoor environments whilst a map
is built. It is an omnidirectional robot with six motion
axis, each one equipped with absolute and incremental en-
coders. A laser gyroscope completes its proprioceptive sen-
sory system. Environment data is captured from two exte-
roceptive sensors, a 2D laser rangefinder and a gray-scale
video camera, as shown in Figures 2(a)-(b). Figure 2(c) de-
picts the reference frames of the multisensory system, with
RL: XL × YL × ZL being that of laser rangefinder and
RC : XC × YC ×ZC refers to the camera.

The rangefinder is a 2D30 model manufactured byIBEO
Lasertechnik GmbH. It performs eight scans per second in
theXL × Y L plane and reaching objects placed up to30m
from the origin ofRL. The measurement principle is based
on the time-of-flight of laser impulses. The laser beam car-
rying the impulses is generated inside the rangefinder and
reflected by a45o rotating mirror in theZL axle. The
mirror performs eight rotations per second in the counter-
wise sense, allowing the laser beam to cover a view of270o

(±135o ). The range measurements start every time the laser
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Figura 2: (a) The Omni mobile robot, its (b) exteroceptive multisensory system and (c) local reference frames.

beam is atφmin = −135o with respect toXL. From this
direction, one measurement is done every∆φ = 0.6o, un-
til the beam direction reachesφmax = 135o. Let φn denote
the laser beam direction angle of then-th measurement. The
range measurement taken atφn is denoted asrn. The entire
set of measurements is referred as a 2D range image:

L = {(rn, φn)|n = 1, . . . , N}. (1)

Each(rn, φn) correspond to the polar coordinates of the in-
tersection point between the laser beam and an obstacle at di-
rectionφn. The great accuracy of directionφn is guaranteed
by an absolute encoder. However, each measurementrn is
assumed to be contaminated by an additive zero mean Gaus-
sian noise with varianceσ2

r, denoted asN (0, σ2
r). A pre-

vious characterization procedure of the rangefinder detected
bias in the range measurements. Such a bias (moving av-
erage) is compensated in software after each scan, allowing
the zero mean noise hypothesis to be assumed. The measure-
ment standard deviation isσr = 3 cm.

The video camera acquires gray-scale images represented by

I = {p(u, v)|u = 1, . . . ,M ; v = 1, . . . , N)}. (2)

with p(u, v) being the intensity of each pixel at coordinates
(u, v) in the image plane, attached atRI : X I × YI refer-
ence frame. Considering the simplified pin-hole geometrical

model for the camera (Jähne and Hauβecker, 2000), the opti-
cal axis is orthogonal to the image plane at metric coordinate
(xI

o, y
I
o) of RI . The origin of the camera reference frame

RC is at distancef of (xI
o, y

I
o), wheref is the focal distance.

TheXC andX I are parallel and in opposite directions, such
asYC andYI . ZL andYC are parallel and share the same
direction.

3.2 Calibration

The positioning between camera and rangefinder allows to
easily relate vertical lines observed in video images and their
observation angle in the rangefinder reference frame. This is
used to relate video and range image features during data fu-
sion in the local map building process. In order to to this, the
geometry between these sensors should be described in more
detail, as well as calibration is necessary. Firstly, we suppose
ZL andYC are parallel. This results in a simplified super-
imposed view ofXC × ZC andXL × YL planes, as shown
in Figure 3. In order to perform information fusion between
the images of the multisensory system, we are interested in
obtaining a relationship

φ = g(u), (3)

with u being the column index of a vertical line observed in
the video imageI, andφ is its observation angle from the
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Figura 3: Simplified superposition of laser rangefinder and
video camera reference frames.

rangefinder.

Considering the rangefinder reference frameXL × YL, let
tL
C = (xL

C , yL
C) denote the projection point of the origin of

XC × ZC , as well asθL
C is the projected angle between

ZC andXL. Thus,(xL
C , yL

C , θL
C) characterize misalignment

between the two sensors in the projected rangefinder refer-
ence frame. LetP be a range image point with coordinates
pL = (xL, yL)T observed atφ direction. Its projection in
the image plane is given byu. Further, letpC = (zC , xC)T

be the coordinates ofP in XC × ZC . Such parameters are
related by

pC = R(θL
C) ·

(

pL − tL
C

)

, (4)

with

R(θL
C) =

[

cos(θL
C) sin(θL

C)

− sin(θL
C) cos(θL

C)

]

. (5)

From projective geometry,P is observed at image column

u = uo −
xC

zC
·

f

hu

, (6)

with uo being the column index ofxI
o, hu is the metric width

of a pixel. SincexL = r cos(φ) andyL = r sin(φ), with
r being the range measurement ofP , an analytical form of
equation 3 can be derived from eqs. (4)-(6). It can be ver-
ified that g(u) can be approximated by an affine function
when there is no sensor misalignment,i.e., θL

C → 0 and
∥

∥tL
C

∥

∥ → 0, which lead toarctan be approximately linear to
u − uo. Hence, in order to avoid nonlinear least-squares es-
timation techniques for calibration, sensor misalignmenthas
been done manually as low as possible. In this way, a reason-
able form ofg(u) is a first order polynomial (affine function).

The calibration procedure consisted of acquiring 50 pairs of
images (L,I) of different positions of the robot with respect
to two targets. The targets are vertical wood boards, whose

both extremities were marked by black tires. In this way,
such extremities are easily identified in video images. In
range images, these extremities appear as large discontinu-
ities in the scans. Figure 4(a) shows a video image, with
four columns well identified as corresponding to the targets.
The observation directions in the corresponding range im-
age are shown in Figure 4(b). From the entire set of images,
152 pairs of corresponding rangefinder observation angleφm

and camera vertical indexesu were used in a linear least-
squares regression procedure. The rangesr were limited to
0.5 m ≤ r ≤ 10.5 m. The estimated model is given by:

ĝ(u) = â · u + b̂, (7)

with â = −0.00162942 and b̂ = 0.32413517. The estima-
tion residualsφm−ĝ(u) with respect tou are shown in Figure
4(c). It should be pointed out that, despite the nonlinear char-
acteristic of the geometric model, the linear approximation
seems to be satisfactory, since the residual error varianceis
constant for the experiment. In this way, the stochastic model

φ̂ = â · u + b̂ + ε, (8)

is used henceforth, withε ∼ N (0, σ2
ε) andσε = 0.412◦.

This model allows to estimate the varianceσ2
φ̂

of φ̂ from the

varianceσ2
u related tou and the model error variance as

σ2
φ̂

= â2 · σ2
u + σ̂2

ε. (9)

4 LOCAL MAP BUILDING

The local mapMR is obtained from the pair of synchronized
exteroceptive sensor images (L, I). Multisensor data fusion
consists in using vertical edges extracted from the video im-
age to improve a range image map. In order to accomplish
this, the following steps are followed: feature extraction,
rangefinder map building and sensor data fusion. These pro-
cedures are described in this section.

4.1 Feature extraction

The feature extraction process issues two lists of features:

• ΩU = {Uk | k = 1, . . . , NΩU } is a list of indexesUk =
{uk,σ2

uk
} extracted from the video imageI. For the

k-th feature,uk is the index of the column related to the
k-thvertical edge, andσ2

uk
is its variance;

• ΩS = {Sk | k = 1, . . . , NΩS} is a list of line
segmentsSk = {lk,Λlk ,pak

, κ+
ak

,pbk
, κ+

bk
} extracted

from the rangefinder imageL. For thek-th feature,
lk = (ρk, αk)T represents the polar parameters of a infi-
nite line, andΛlk is its covariance matrix.pak

andpbk

are points corresponding to the extremities of the line
segment.κ+

ak
andκ+

bk
are flags associated topak

and
pbk

, respectively, to indicate whether these extremities
are strong breakpoints (discussed below);
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Figura 4: Example used for calibration: (a) Vertical lines in video image and (b) projected observation angles in range image.
In (c) obtained calibration residuals for the entire set of image pairs.
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Figura 5: Video image feature extraction: (a) raw image, (b)binary image with enhanced vertical edges, (c) accumulatorand
(d) extracted vertical lines.

Feature extraction of video image is based on well known
techniques. Figure 5 gives an example of the application of
these procedures. Firstly, a Canny filter (Canny, 1986) is ap-
plied for edge enhancement in both vertical and horizontal
directions ofI (Figure 5(a)), followed by local maxima se-
lection. Pixels belonging to vertical edges are selected by
eliminating pixels with gradient direction greater than10◦

with respect to vertical. A binary image is obtained by ap-
plying hysteresis thresholding based on10% and60% his-
togram percentiles of the gradient module, as shown in Fig-
ure 5(b). The main drawback of these procedures is that very
high (or low) levels of image brightness lead to no detec-
tion at all. Other more robust techniques may be employed
(Jolion et al., 1991), at the cost of computational complexity.
From the binary image, a specialized Hough accumulator is
applied. The accumulator counts the number of active pix-
els of each column, as shown in Figure 5(c). A column is
considered as a valid vertical edges if the number of active
pixels is greater than30 % of the number of pixels per col-
umn. This fixed threshold is justified, since normalization
procedures have been applied in the previous steps. For the
example, the resulting edges are shown in Figure 5(d).

Since each vertical edge can be composed of more than one
column, starting fromud up to uf , these indexes are also
considered for determining the parametersU = {u,Λu}. In

a first sight, the following statistics can be used:

u =
∑ uf

x=ud
x·A(x)

∑ uf
x=ud

A(x)
, σ

2
u =

∑ uf
x=ud

(u−x)2·A(x)
∑ uf

x=ud
A(x)

,

(10)
where A(x) is the contents of the Hough accumulator at
x column. However,σ2

u becomes zero for the case of
ud = uf , resulting in an inconsistent measure of variance
given that the pixel width is not considered. Thus, we pro-
pose to use a3σ reasoning about uncertainty in the interval
[(ud − 0, 5) , (uf + 0, 5)]:

σ
2
u =

[

max(uf − u +
1

2
, u − ud +

1

2
) ·

1

3

]2

. (11)

From the range imageL, ΩS is extracted by using the fast
split-and-merge fuzzy algorithm (Borges and Aldon, 2004b).
This algorithm uses classic fuzzy clustering for line finding,
but in a split-and-merge manner. It is well known that most
clustering approaches should use a guess of the number of
clusters exist in a set of support points, which in this case
means to know in advance the number of lines in a range
image. In a split framework, this problem is solved by call-
ing recursively the clustering algorithm to find two clusters
every time. If one of the clusters cannot be validated as a
line feature, the clustering algorithm is applied again to this
cluster until having only valid line clusters composed of at
least 10 support points. In the merge phase, very close clus-
ters are merged. Laser scan breakpoints are detected using
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an extended Kalman filter-based approach (Castellanos and
Tardós, 1996). Breakpoints correspond to important discon-
tinuities in the range image sequence, and may indicate the
extremities of local environment surfaces. Breakpoints used
in determining line extremities1 pak

or pbk
have their corre-

spondingκ+
ak

or κ+
bk

flags set.

4.2 Local rangefinder map building

In this procedure, a first instance of the local map is built us-
ing only features extracted from the range image. This map
can be composed by semiplanes, edges and corners. Figure
6(a) gives an example of line features extracted from a range
image. In order to determine each map structure, the follow-
ing steps are followed:

• Semiplane structures: every line segment extracted
from the range finder image is converted to a semiplane.
The visibility side of the semiplane is identified by a
flag. A simple test procedure allows to identify whether
the coordinates of a point in the local map is on the visi-
bility side of a semi plane. The visibility side is a impor-
tant feature of a semiplane, since it allows to correctly
solve matching problems. The default visibility side of
a semiplane is set to the side where the robot observed
it. In the example, see Figure 6(b);

• Edge structures: all line segments extremities marked
as strong breakpoint are candidate to be considered as
edge structures. However, only those with small as-
sociated uncertainty are accepted as edges. The edge
uncertainty is obtained considering the uncertainties as-
sociated to the scan points used in the determination of
the line segment extremity, as well as the line segment
uncertainty (Borges, 2002). In the example, see Figure
6(c);

• Corner structures: all line segments having extremities
which are two consecutive range scan points are can-
didates to be used for corner determination. These ex-
tremities should not be classified as strong breakpoints.
The crossing point between the line candidates is com-
puted as well as its covariance matrix by uncertainty
propagation from line parameters covariance matrices.
Such a point is accepted as corner whether the angle be-
tween the supporting line features is greater than60◦.
In the example, see Figure 6(d) shows only one corner
found;

4.3 Sensor data fusion

The last procedure in local map building uses the vertical
lines extracted from the video image to update the initial lo-
cal map structures obtained from range image. The sensor

1the extremities of a line segment are obtained by projecting the first and
the last (in order of acquisition) support points in the line

fusion is performed for (i) reducing edges uncertainties and
(ii) extracting photometric edges. This procedure is well il-
lustrated in Figure 7.

Edges found in the local map could be observed by the cam-
era as vertical line featuresU1 andU2 (see Figure 7(a)). Thus,
the classical Extended Kalman Filter (EKF) is used to update
the point coordinates (xi, yi) of all edges whose observation
angleφi = arctan(yi/xi) in the range image local map is
in correspondence with the observation angleφ̂j = ĝ(uj) of
vertical edgeUj (eq. (7)). Such correspondences are verified
using the classicalχ2-hypothesis test. For instance, Figure
7(b) shows the estimated lines of sightÔ1 andÔ2 in the local
map associated to vertical featuresU1 andU2, respectively.
From these features, onlyU2 is in correspondence with an
edge, as can be seen in more detail in Figure 7(c). Using
the EKF formalism, the edge parameters (xi, yi) obtained
from range features represent the predicted coordinates of
the edge, with associated covariance matrix. The angle of
view φ̂j is used to update such coordinates as an observa-
tion in the EKF measurement model. The resulting edge is
shown in Figure 7(d). Even it is not visible in this figure, the
updated edge is closer to the line of sight of featureU2, and
its associated uncertainty is reduced.

For last, photometric edges are estimated from all vertical
lines which did not have correspondences in the initial local
map. Since these structures are composed of a point, and
the camera can only capture their observation angleφ̂, they
are estimated using100 bootstrap samples (Efron, 1979), ob-
tained from the distribution of all scan points which lie, ac-
cording to theχ2-hypothesis test, in the vertical line angle of
view φ̂. Photometric edges presenting large covariance ma-
trices are discarded. Such a phenomena may arrive if the
local region is very cluttered. In this way, we obtain reliable
photometric edges. In in Figure 7(d), the vertical edgeU1

has originated a photometric edge in the line of sightÔ1 of
the local map. It can be seen in Figure 7(a) that such a fea-
ture corresponds to the border in the right of a board fixed on
a wall. Such features can only be detected using both range
and video images. They are useful for robot localization, and
should be represented in local maps. In this case, this is a
photometric edge.

5 EXPERIMENTAL EVALUATIONS

The previous sections have shown some examples using real
experimental data acquired with Omni. Thus, the experimen-
tal evaluations shown here illustrate some further properties
of the proposed approach. In Figures 8(a)-(b) laser and video
image features are used to build the local map of Figure 8(c)
(Borges and Aldon, 2004a). In such example, the robot is
in a narrow corridor, where features are more difficult to be
detected.

In Figure 9(a), a sequence of range images are superimposed
to illustrate the need to differentiate between edges, corners
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Figura 6: Local map obtained from a range image: (a) featuresobtained from a range image, (b) semiplanes, (c) edges and
(d) corners. Uncertainty related to edges and corners are represented by ellipses, which were intentionaly increased in order
to be visible.
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Figura 7: Example of sensor fusion: (a) vertical edges in video image, (b) lines of sight of these features in the range image
map, interest zone before (c) and after (d) fusion.

and photometric edges. The features indicated by letters A,B
and C are also observed in some video images, such as Figure
9(b) shows. In this sequence, these features are sometimes
detected in the local maps as edges, corners or photomet-
ric edges. In means that the semantics related to each map
structure can change according to its local observation. This
rich variety of geometric features represented by points inthe
local map has lead to improve convergence of our previous
work on environment mapping (Borges and Aldon, 2002).
The computing time of the proposed method has been of at
most350 ms in the Omni platform machine, based on a Pen-
tium II 333 MHz CPU.

6 CONCLUSIONS

This paper presented the local mapping system used in Omni
mobile robot. This system applies data fusion strategies of
local environment information acquired by a video camera
and a laser rangefinder. It is the the basis of the local mapping
module of a successful simultaneous localization and envi-
ronment mapping strategy presented previously in (Borges
and Aldon, 2004a)(Borges and Aldon, 2002). In order to al-
low 3D environment modeling, the current work is based on
the replacement of the monocular camera by a stereo system.
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