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Abstract - This paper presents results of the use of 

simultaneous state feedback control state/parameter 
estimation of a third order liquid level process.  In this 
process, a state space controller with integral channel 
driven by the estimated signals is investigated. Effects such 
as valve opening and operating point changing are 
correctly identified by an Extended Kalman Filter (EKF). 
On the other hand, non-modeled stick-slip of the level 
sensor, leads to an erroneous interpretation of process 
behavior by the EKF. 

 
Index Terms — State Space Control, Extended Kalman 

Filter, Non-linear effects, stick-slip, liquid level process. 
 

I. INTRODUCTION 

In order to investigate the application of control 
techniques and estimation, a third order liquid level 
process was implemented. This system, shown in Figure 
Fig. 1, is highly configurable. Depending on the 
positioning of the valves, one can have a first, second or 
third order process, as well as the number of 
inputs/outputs can be modified. For each connection, 
the liquid flow depends on the square root of the liquid 
level, which imposes a strong non-linear characteristic 
of this system. Such a system is commonly found in the 
industry, and measurements are perturbed my sensor 
noise and imperfections. 

 

 
Fig. 1 - Picture of the liquid level process 

In this work, results on state feedback control and 
parameter estimation applied to a third order liquid level 
process are discussed. State space control needs a model 

and the measurement (or observation) of the state 
variables in order to feedback them. Theoretically, an 
arbitrary pole placement could be obtained. As a linear 
approach, an operating point of the non-linear process is 
assumed. In practice, however, an accurate model of the 
system is difficult to be obtained, in part due to 
approximations on modeling as well as on changes on 
the parameters of valves models. In order to 
automatically identify the new model parameters, a 
stochastic approach as been implemented. Indeed, an 
Extended Kalman Filter (EKF) [7][9] is used to 
simultaneously estimate the process model parameters 
(valves load loss) and signals (levels) that are used by a 
state space controller with integral channel. Such a 
strategy has shown satisfactory results in other areas, 
such as in mobile robotics [2] or in catalytic reactors 
[10]. 

The block diagram of Figure 2 shows the main 
components of this research. The plant (liquid level 
process), is controlled by a state space controller, which 
uses smooth estimates of the reservoirs levels as state 
feedback. These estimates are provided by an EKF, 
which also computes estimates of the plant parameters. 
However, for the current investigation, there has been 
no interest on feeding back the estimated parameters, 
resulting on adaptive control. The main concern is on 
the validity of the estimated parameters. 

This paper is organized as follows. Section II presents 
the non-linear continuous time model of the liquid level 
system. Control structure and real-time parameter 
estimation models are presented in Section III.  The 
context of this study is on remote laboratory 
experiments, for which the general structure is 
presented in Section IV. Experimental results are 
discussed in Section V. 
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Fig. 2 – Block diagram of the control system. 
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Fig. 3 - Multi-variable liquid level schematics. 

II. PROCESS MODEL 

Considering the process in Figure 3, the following 
variables can be defined: 

• , input flow [ ] in reservoir 1; iq scm /3

• , , flows between reservoir [ ]; 13q 32q scm /3

• , output flow [ ] from reservoir 2; oq scm /3

• , liquid levels [cm] of reservoirs 1, 2 and 
3; 

321 ,, hhh

• A  - reservoir transversal section area [ ], 
supposed the same for the three reservoirs. 

2cm

By applying Bernoulli’s law in the mass balance, one 
has the following non-linear dynamic model: 
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A. Linearized Model 

The levels h1, h2 and h3 are the state variables, named 
henceforth x1,x2 and x3, and represented in vector form 
as x = [x1  x2  x3]T. In this work, the flow qi is the input, 
x2 is the output of the system. Linearizatiuon of the non-
linear model around an operating point leads to the 
following model:  
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and y = x2 being the system output. In such a model, δx1, 
δx2, δx3 and δu are small variations around the operating 
point [8]. Ri and C are obtained from the non-linear 
model parameters. They are equivalent to resistences 
and capacitances in electric circuits. 

III. SIMULTANEOUS STATE SPACE 
CONTROL AND PARAMETER ESTIMATION 

State space control can take benefit of all the values 
estimated by the EKF. This approach is, however, very 
dependent on correct model structure and is quite 
sensitive to sensor errors. Thus, correct estimation of 
model parameters can improve control performance. A 
priori estimates of the dynamic model parameters can 
be obtained from steady state of the system. However, 
such parameters can change according to operating 
points due to non-modeled effects. This makes 
necessary the use of real-time parameter estimation 
simultaneously with system control.  

 
A. State space control 
 
Parameter estimation is performed with the system in 

closed-loop with a controller. With the controller, in 
order to achieve zero steady error, the actuator signal 
includes an integral channel, considering the steady 
state operating point, the pole placement and reference 
signal:  
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with r(t) being the desired h2 level. The operating point 
is represented by USS and XSS for the input u and the 
state vector x. The gains K and KI are determined based 
on the desired location of linearized system poles. 

B. Real-time parameter estimation 

Consider θ = [k2  k13  k32]T the vector of model 
parameters. The recursive and simultaneous estimation 
of these parameters and the state vector x is performed 
using a linearized version of the Kalman filter [9], the 
suboptimal Extended Kalman Filter (EKF). In order to 
achieve this, the following augmented model for the 
discrete time describes the evolution of parameters and 
states [7]:  
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and wk ~ N(0,Qk) being a white Gaussian noise, 
representing uncertainty on the model and parameter 
evolution. The following model governs the 
measurements of the process: 
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with vk ~ N(0,Rk) being a white Gaussian noise, 
representing measurement uncertainty. According to the 
EKF formalism, measurements integration is carried at 
each discrete time using EKF prediction and updating 
equations, resulting in estimates  and  of the 
augmented state and its associated covariance matrix, 
respectively. A previous tuning of the filter gave values 
for Q

kẑ kP̂

k and Rk. A priori information about extended 
model state and covariance matrix is embodied in the 
initial estimates z0 and the associated covariance matrix 
P0.  

IV. REMOTE LABORATORY 

The system discussed in this paper is available as a 
remote laboratory [3][6]. This means, allows remote use 
of a real experiment. In this scenario, TCP/IP and http 

protocols can be used for keeping real time 
communication between user and process. In the 
distance education context, remote laboratories are 
known to be very efficient, due to the high level of 
interaction. The main idea of the proposed remote lab is 
to use the World Wide Web as supporting 
communication platform and a Web Browser as its 
interface [11]. A similar system proposed by other 
authors is presented in [12]. 

The client software required to run the experiment is 
the everywhere available Web Browser and Java Applet 
plug-in. This second is available for the most commom 
web browsers. The Web server implements the interface 
between the remote client and the physical experiment 
in the laboratory. In real-time the user can adjust 
controller parameters, reference signals and see them on 
a continuously updated plot of chosen signals as well as 
on 2-D visualization of the water levels. 

Remote laboratories can support one or more online 
experiments [1][3][13]. Fig. 4 shows a possible solution 
for a remote lab with an arbitrary number of 
experiments, based on a unique Web server.  

 

Fig. 4 – Remote laboratory architecture with an arbitrary number of 
experiments 

A. Web Server Characteristics 

The Web Server used in this remote laboratory is 
Apache TomCat, which supports Java Server Pages and 
Servlets and allow the use of Java 2 Enterprise Edition 
Technologies – J2EE. To manage the experiments data 
the server uses FireBird. FireBird is a full-featured SQL 
open source database engine. All results and parameters 
are stored on database [5] for future evaluation. 
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Another important aspect on the server side is a Java 
Socket Server application that receives the client 
connection and send back the experiment results in real 
time at each 0,5 seconds  [5]. The client is a Java applet 
application that plots a 2D graphics of the liquid levels 
and actuator signals. In this work the server side is 
composed of only open source applications. The 
complete remote laboratory communication architecture 
is presented on Fig 5. 
 
 

In this experiment, the controller was designed using 
the linearized model and without integral term. In the 
second run, the integral term was considered, with the 
controller achieving satisfactory results, i.e., small 
steady state error even after change on reference input 
(see Fig. 7). Even with satisfactory results, the integral 
term may lead to undesired effects such as overshoot if 
model mismatches. This made adjusting the integral 
gain a difficult task  

 

Remote L

 
Fig 5 - Remote Laboratory Communication Architecture 

B. Real Time Control Program 

An IBM-PC implements interrupt-based real time 
control at 10Hz. This approach makes possible process 
communication in every control cycle. The 
communication frequency is 2Hz, since it is not 
necessary to display every data results. This leads to a 
very low data rate on the client side.  

V. EXPERIMENTAL EVALUATION 

This section presents some experimental results, 
following the system setup of Fig. 3. Fig. 6 shows the 
estimated levels (hi-hat) obtained in a run with reference 
changing from 4cm to 7cm at time t=400s. The 
controller used no integral action (Ki=0), thus steady 
state error is expected if model mismatches. With 
t<400s, the controller presented satisfactory results. The 
model parameters were k2 = 22, k13 = 31 and k32 =59. 
These are approximated parameters, previously 
determined using steady level measurements taken with 
constant inflow u. Thus, EKF was not used for 
determining these parameters. After change of operating 
point, the system performance has been degraded. 

 
Fig. 6 - Estimated levels and reference for controller without integral 

action using approximated parameters. 

The estimated parameters during this experiment are 
shown in Fig. 8. The initial values are the same used in 
the previous run, but after some time the estimated 
values stabilize around k2 = 17.61, k13 = 32.06 and k32 
=36.68. These are now considered as estimated 
parameters. 
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Fig. 7 - Estimated levels and reference for controller with integral 

action using approximated pareameters 

Fig. 8 - Estimated valve parameters. 

In the third run, the first experiment without integral 
action was repeated, but considering the estimated 
parameters in computing the control law terms. Since 
there is no integral action, steady state errors mean 
model mismatch, at least for small frequencies. The 
obtained results shown in Fig. 9 presented satisfactory 
performance for the entire experiment. 

It should be pointed out that the stochastic model 
used for estimation incorporates only Gaussian noise. 
Thus, non-zero mean perturbations can lead to 
divergence on the estimated parameters. In the case of 
the used sensor, composed of a floating buoy connected 
to a resistive potentiometer, stick-slip due to static 
friction acting on sensor axis. This can be verified in the 
curves of Fig 9 where stick-slip effect affects directly 
the estimated parameters of Fig. 11. 

Stick-Slip effect difficult control and leads to a wrong 
interpretation on the EKF. It has been verified in Figure 

10 at about 500s as well as at 1000s (on level only). 
These effects were noticed in practice and the wrong 
interpretation on EKF is shown in Fig. 11. 

−

1h

 

Fig. 9 - Estimated levels and reference for controller without integral 
action using estimated parameters. 

 

Fig 10 - Stick-Slip occuring during an experiment. 

Fig. 11 - Stick-Slip influence on the estimated parameters 

The prevention of this effect can be achieved by 
using non-mechanic sensors, such as ultrasound and 
capacitive sensors. However, other effects can appear 
with these sensors as consequence of environmental 
phenomena.  
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VI. CONCLUSIONS AND FUTURE WORK 

This paper investigated the use of state space control 
and stochastic estimation in a third order liquid level 
experimental apparatus. Experimental evaluations 
indicated the importance of accurate model estimation 
in this process. This has been achieved, at least for 
steady state.  

It has been verified that non-modelled effects trouble 
the stochastic estimator. In this case, sensor stik-slip, 
can lead to diverging estimation. Such a non-linear 
affect is difficult to be modeled by a stochastic 
distribution. This opens to two perspectives of 
investigation. One very interesting possibility is the use 
of EKF in the implementation of adaptive control for 
the liquid level process, with estimated parameters 
being used for real-time adaptive control. This, 
however, can only be achieved by an in dept study on 
how to detect and take into account non-modeled effects 
during operation.   
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