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Abstract

Theoretical solutions based on the matching of 2-D
range measurements with a map of the environment have
been proposed to solve the robot localization problem.
However, most of them have not been experimented in real
conditions: the robot was stopped or it moved slowly dur-
ing range data acquisition, and the environment was sup-
posed to be static. In this paper, we propose and evaluate
a dynamic localization method based on feature matching.
Experiments carried out in real cluttered indoor environ-
ments including people and unknown obstacles show the
good performance of the proposed algorithm against the
classical solution based on Kalman filtering.

1 Introduction

Estimating the 2-D pose of a vehicle in real environ-
ments requires the computation of the geometric configu-
ration of a frame attached to the vehicle with respect to
either a local or a global coordinate frame. Relative lo-
calization makes generally use of proprioceptive sensors
(e.g. odometers, inertial sensors and gyrometers) to esti-
mate the robot motion, and to update the robot configura-
tion with respect to a start position. Most of these sensors
provide high-rate measurements, allowing a continuous po-
sition estimation. However, dead-reckoning induces errors
which increase without bounds. Measurement of known
landmarks by exteroceptive sensors (e.g. laser rangefind-
ers, goniometers and video cameras) can be used when an
absolute pose update is needed. These measurements con-
cern either artificial beacons, or natural environment fea-
tures.

Map-based localization uses natural environment fea-
tures as landmarks. A laser rangefinder is often employed
to build a local map which is matched to a global reference
map in order to estimate the actual position and heading of
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the robot. This approach has been extensively studied for
navigation in indoor environments [1]. However, most of
the proposed solutions do not take into account some real
problems encountered in practical applications:

� They are generally inappropriate to accurate dynamic
localization, i.e. localization while the robot is mov-
ing, because the range data processing does not con-
sider the measurement error induced by robot motion;

� They make use of the extended Kalman filter (EKF)
for pose estimation [2][3][4][5]. However, by lineariz-
ing a non-linear measurement model around the cur-
rent predicted pose, the EKF may be very sensitive to
non-linear aspects of the measurement model and may
give suboptimal estimates. Furthermore, as mentioned
in [6], this method often uses fixed values of the mea-
surement noise covariance matrices, and most of mea-
surement errors are assumed to have Gaussian distri-
bution. In many practical applications, such assump-
tions are not true, specially in dynamic environments.
Then, the error covariance matrices have a strong in-
fluence on the filter convergence.

In a previous paper, we have presented a weighted least-
squares-based method to solve the relative motion estima-
tion problem [7]. The matched features between two con-
secutive range images acquired by a laser rangefinder were
used to estimate the robot motion. The method was em-
ployed in an iterative manner in order to give better mo-
tion estimates by updating the weights at each iteration.
Its non-iterative absolute pose estimation version is pre-
sented in this paper. In doing so, the matched features
are obtained from a local map built from the last range
image and a global environment map. It uses a unified
representation for heterogeneous features, i.e. lines and
points. The problem is formulated so as to minimize a
weighted least-squares criterion which incorporates feature
correspondence measures and position estimates. Thus, the
final pose estimates are optimal in the least-squares sense.



In this paper, we are dealing with dynamic localization.
Local map building is improved with the incorporation of
a direct correction procedure for range images that are de-
formed during acquisition due to the robot motion. In an
experimental comparison carried out in a real cluttered in-
door environment including people and unknown, the pro-
posed approach gave better results than the EKF solution.

This paper is organized as follows. The pose estimation
problem from local and global maps is stated in Section 2.
The local map building procedure is described in Section
3. Map matching is described in Section 4. The pose esti-
mation procedures are presented in Section 5, and Section
6 reports the experimental results.

2 Problem statement

We consider a robot equipped with a laser rangefinder
navigating on a flat ground in a structured indoor environ-
ment. As the robot moves, sensor observations become
available at discrete time �, and a local environment map
����� is extracted. In this work, ����� is composed of
��
� geometric features ��

� that are linear and ellipsoidal
clusters. Its general form is
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where ��� is the ��� feature parameter and��
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is its covari-

ance matrix. ��� is a label that indicates the feature type.
The robot absolute pose at time � is given by ���� �

������ ����� ������ , where ������ ����� is the vehicle 2-D
position in the global frame and ���� is its heading. The
environment is represented by a global map
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with � � ������ ������ and 
 � ���� being respectively the
translation and rotation parameters that relate the coordi-
nates ��� � ���� of an absolute point in the global map and
its coordinates ���� ���� in the local map. The rotation
matrix��
� is given by
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The problem stated here is: At some time �� � �,
given the local and global environment maps ����� and
�����, compute an estimate ������ of the robot absolute

range image points:

X

Y

linear clusters:

real environment:ellipsoidal clusters:

Figure 1: Linear and ellipsoidal geometric features.

pose ���� and an associated covariance matrix �����
��.

The most used approach to solve this problem embodies
three phases: pose prediction, map matching and pose es-
timation. Absolute pose prediction is provided by a dead-
reckoning method, like odometry. Features matching from
maps ����� and ����� is achieved by applying a local
procedure where the predicted pose is taken into account.
The pose estimate ����� is obtained from the matched fea-
tures. In this work, �� corresponds to some time after �
when a new absolute pose estimate is available after all pro-
cessing described above and which started at time �.

3 Local map building

In this work we build local maps only from 2-D range
images acquired by a rotating laser rangefinder. These
maps are composed of geometrical features that are lin-
ear and ellipsoidal clusters (see Fig. 1). In real cluttered
environments, linear clusters represent vertical planes (e.g.
walls and large planar obstacles) when scanned by the laser
rangefinder. However, these same environments may con-
tain small objects like furniture that are modeled by lin-
ear clusters with short length in the range images. For a
long time, short lines have been ignored for localization
purposes as their orientation is not reliable. Therefore, the
center coordinates given by the mean of the range points
that compose the short lines are more stable and may be
used as feature description. In this work, short lines are
referred to as ellipsoidal clusters.

As we are dealing with dynamic localization, range im-
ages are always deformed given that they are acquired dur-
ing the robot displacement. Thus, we propose a direct range
image correction procedure in order to compensate for ve-
hicle motion. Range image correction and feature extrac-
tion are applied for local map building, as follows.



3.1 Range image correction

Range images acquired by laser rangefinders have a po-
lar representation � � ����� ���� � � �� � � � � ��. An-
other equivalent representation is the cartesian one: � �
����� � �

�
� �� � � �� � � � � ��, with ��� � �� ����� and

��� � �� �����. The reference frame of a range image
has its origin on the rotation axis of the sensor mirror. The
acquisition starts at the angle �� and stops at �	 . Each
point � represents the coordinates of the intersection point
between the laser ray with angular direction �� and the
first obstacle on this direction. The distance of the obstacle
at the direction �� to the sensor reference frame origin is
�� � 	. The acquisition of a complete range image gets
a time interval �� that is not zero. It means that during
a scan, if the robot moves, the range image is deformed.
Therefore, it is necessary to perform range image correc-
tion before feature extraction.

The proposed correction procedure takes into account
the sensor displacement during the acquisition process. Let
��� � ���� ��� ���

� be the sensor absolute position when
the ��� point is acquired. In this way, ��	 is the sensor
pose at the last point, or when the sensor signals end-of-
acquisition. At the end-of-acquisition, the local coordinate
frame has been displaced of ��	 � ��� since the ��� point
acquisition. However, ���� � �

�
� � represents the coordinates

of the ��� point when the sensor was at ��� . If we want
to recover the coordinates �
��� � 
�

�
� � of the same point when

the sensor is on ��	 , the sensor displacement is taken into
account as�
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Eq. (3) indicates that it is not necessary to know the
sensor absolute pose at each ��� point, but its relative dis-
placement����� ��	��

�
� to the � �� point. Thus, relative

pose estimation as that provided by odometry may be used
as a guess to ���� . It must be pointed out that ���� is not
the robot displacement, but the sensor displacement.

We know that a well calibrated odometry system is re-
liable for short time periods. In our implementation, the
sensor displacement ���� is interpolated by a linear rela-
tion between ���� and ���	 � �. Therefore more sophis-
ticated approximations may be developed.

3.2 Feature representation

The main challenge in this work was on choosing a uni-
fied feature representation for linear and ellipsoidal fea-
tures. With such representation, it is possible to solve the
pose estimation by means of an embedded least-squares. It
means that a least-squares problem which has no solution
for separate features may become solvable by achieving si-
multaneous feature fusion.

We have chosen a unified feature representation that has
the following characteristic: linear and ellipsoidal clus-
ters have homogeneous parameters defined in the same Eu-
clidean space. For the case of ellipsoidal clusters we have
� � ��� ��� which are the coordinates of the cluster center
in the Euclidean space. Linear cluster parameters are asso-
ciated with the line that best fits the cluster points in the
least-squares sense. This line has polar parameters that are
��� ��. Linear clusters are represented by � � ��� ��� , with
� � � ���� and � � � ���� being the coordinates of the
point on the line that is closest to the Cartesian coordinates
origin. In order to identify each feature type, a label � is
defined. Associated to each feature, we have a covariance
matrix �� that is estimated from the data fit residuals by
first-order covariance propagation. Therefore, we have a
compact feature representation that is � � �� ��� � ��.

We can show that given the relation between the local
and global reference frames of Eq. (1), the local �� �� and
global ���� feature parameters are related by
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The parameters �� � �� and �� are recovered from the
compact parameter representation � � � ��� ���

� � �
��. If

�� denotes an ellipsoidal cluster: �� � �� � � and �� � 	.
If �� denotes a linear cluster: �� � ����� � �� � �����

and �� � ���� , with �� � ������������.

3.3 Feature extraction

Feature extraction from the rectified range image is
achieved by applying a clustering algorithm to find only
linear clusters [8]. This algorithm embodies a classical
fuzzy clustering algorithm in a split-and-merge framework.
It avoids the need to have an initial guess for the number of
clusters. During the split phase it recursively cuts the entire
range image into two linear clusters at each iteration, and
stops when all actual clusters satisfy a validity criterion.
In the merge phase clusters are fusioned if the new cluster
also satisfies the validity criterion. Further details are pre-
sented in [8]. This algorithm gives much better results than
the classical iterative end-point fit, usually employed for
line extraction in video images. Some of the extracted lin-
ear clusters will become ellipsoidal clusters given the line
length. In experiments, we have chosen as ellipsoidal clus-
ters all linear clusters whose length was less then 	���.

4 Map matching

Map matching is essential for pose estimation. In this
phase we attempt to find a list of local and global features



that correspond. The usual approach to find feature cor-
respondences is to perform a local matching by using the
Mahalanobis distance. In order to verify if two features
��
� � ���� ���

��
� ��� � � ����� and ��

� � ���� ��
�
��
� ��� �

� ����� match, this statistic measure takes into account
the features parameters and covariances, an initial guess
of the absolute pose �����, and its associated covariance
������. As in classical approaches, ����� and ������ are
given by odometry. Thus, for each feature pair of the same
type (e.g. ��� � ��� ), a match is verified if
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�
�� � �
�������

������
��������

�������

������
���

�
����

����
����

�
�
����

����
�� � �

����

����
����

�
�
����

����
��

being its covariance estimated by first-order covariance
propagation. � is a validation gate that is determined as-
suming that ��������

��

�� ������ ��� follows a ��� distribution.

Usually � � ����, that corresponds to a �	 � confidence
region [9].

All �� matched features are stored in a list 	��� where
the ��� entry is �� � ���

� ��
�
� � ��� such that Eq. (6) is

verified. �� � 	 is a correspondence measure, that is de-
termined in function of the pose estimation approach.

5 Pose estimation

Pose estimation is accomplished from the list 	��� of
matched features. The extended Kalman filter (EKF), that
is a powerfull tool for state estimation of non-linear sys-
tems [9], is the most used pose estimator. However, it gives
suboptimal estimates and its convergence depends of con-
sistent estimates of the noise covariance matrices. To over-
come these problems, we present a weighted least-squares
(WLS) approach, introduced in [7], that gives optimal pose
estimate in the least-squares sense.

The main advantage of using the unique feature rep-
resentation described in Section 3.2 is that a unique cost
function can embody the different features for optimal es-
timation. This is what we have done in a WLS framework.
Hence, we minimize the following cost function:
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where �� � ��� � ���
� � ���� ������ is the residual of
the ��� matched features of 	���. Being �� a non-linear

function of �� and �
, it is possible that Eq. (7) has more than
one local minimum. The first step for the minimization of
� is to find all local minima. In doing so, we solve
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This results in the following non-linear system:
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, � and  are �
 � ma-

trices, and � and � are � 
 � vectors. From equations (9)
and (10) we obtain a trigonometric equation on �
 which
has four solutions �
�, � � �� � � � � �. The corresponding
solutions ��� are obtained from Eq. (9)� Therefore, each
����� �
�� pair is a local minimum of � . The optimal WLS
pose estimate �������

�� is found by evaluating � for each
local minimum, and choosing the one corresponding to the
lowest cost function value. Further details on the develop-
ment and solution of Eqs. (9) and (10) are given in [7].
This is a non-iterative direct solution to the WLS criterion.

As for the EKF, pose estimate uncertainty is given by
a covariance matrix ������

����. This matrix is estimated
by applying the covariance propagation methodology de-
scribed in [10]. From the mathematical development re-
ported in [10], we have

������
���� �

�
��

�����

���
�� �

�
��

�����

���
� (11)

with � ����	� �������������
��, and

� �

	��
���

��

�������
�����

�� �
��

�������

�

�

�
������

��

����
����

�
�
��

����

�

�
�

������

��

����
����

�
�
��

����

�

�

In the above equations, ������ is the residual of the
��� matched features after estimation, and ����

�� is
its associated covariance matrix estimated as ����

�� ��	�
��� ����� � �

�
� ��

�	�
��� ��. ��� and ��� are the local and

global feature vectors of the � �� correspondence.
The final pose estimate ������ is then computed by fu-

sionning the WLS and the odometric estimates as
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and the associated covariance matrix is
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(13)



Figure 2: (a) Omni robot and (b) artificial beacon.

6 Experimental validation

Experimental validation was carried out in a real envi-
ronment with the omnidirectional robot Omni [11]. In this
environment, we have installed artificial identifiable bea-
cons in strategic placements. A reference localization sys-
tem that uses a laser goniometer for beacon detection and
identification [12] was implanted on the robot. When a bea-
con is detected, the relative robot pose with respect to the
beacon is estimated by triangulation. With the identifica-
tion code, the beacon absolute pose is recovered from a
lookup table. Thus, a reference robot absolute pose � ���� is
estimated and used only to evaluate the performance of the
localization algorithms. The errors on the estimate �����
are less than 	��Æ for heading, and � �� for position. Fig-
ure 2 shows a picture of the robot Omni (a) in front of an
artificial beacon (b).

The rangefinder used for local map building is an 2D30
model manufactured by IBEO Lasertechnik. Its maximum
range is �	�, with a precision of�� ��. This sensor pro-
vides scans in a ��	� angular field with a resolution of 	���.
The range image rate is of 8 images per second.

We have evaluated two absolute localization algorithms
that differ only by the estimation phase. One of them uses
the EKF and the other delivers a WLS pose estimate. Their
pose estimates are compared with those provided by the
beacon-based localization system. For the WLS algorithm,
the weight �� for each matched feature was computed as
�� � ��������	�
������where �� is the Mahalanobis dis-
tance between the matched features and � � ���� (Eq.
(6)). It means that all weights are in the interval �	��� ��.
More reliable matches have weights close to �.

The robot pose is updated by odometry between two es-
timates provided by the localization algorithms. The local
map is built each � range images, resulting in an absolute
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Figure 3: The points of a range image acquired during
motion: (a) before and (b) after motion rectification. The
global map is provided for comparison.

Table 1: EKF and WLS performance measures
� � �

  (EKF) ���� �� ����� �� ����� �

!� (EKF) ��	� �� ���� �� ���� �

  (WLS) 	��� �� ����	 �� �	��� �

!� (WLS) ���� �� ���� �� 	��� �

pose estimate each second. As the main purpose of this
experiment is not on the validation of a map building tech-
nique, we used a global map that was built off line.

The experiment consisted in guiding the robot through
a complex trajectory by the mean of a joystick. Some peo-
ple participated in the experiment as mobile obstacles. The
total experimentation time was of one minute and 61 pose
estimates were provided by each localization algorithm. As
a validation experiment for dynamic localization, the robot
was not stopped for local map acquisition. Figure 3(a)
shows a range image acquired during a motion executed
with a translational speed of ����� ���" and a rotational
speed of ���	� Æ�". The global map is provided for com-
parison. As we can see, this image has an important defor-
mation with respect to the global map. After applying the
correction procedure, the rectified image seems to best fit
the environment model (Fig. 3(b)).

In order to compare the EKF and WLS algorithms, we
have defined two performance measures based on the pose
estimates offset with respect to the beacon-based reference
poses �����. The offset is defined as ����� � ������ �
������. As performance measures we have the mean offset,
denoted as   and used as bias indicator, and the offset stan-



dard deviation !�. These measures are taken for each pose
component �, � and �, and presented in Table 1 for both al-
gorithms. It can be verified that the WLS estimates are less
biased than the EKF ones. The position offset correspond-
ing to � and � presented almost the same variance. How-
ever, the heading estimates provided by WLS are much bet-
ter than the ones given by the EKF.
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Figure 4: Extended Kalman filter pose offset results.
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Figure 5: Weighted least squares pose offset results.

The plots of Figures 4 and 5 show respectively the in-
stantaneous values of ����� for this experiment. The as-
sociated standard deviation bounds �! extracted from es-
timated covariance matrices are also plotted as gray inter-
vals. The �! bounds for the position seem to be well esti-
mated by both algorithms. However, the same was not true
for heading. Only the WLS algorithm gave more consistent
results, with most of the estimation offsets between �!.

7 Conclusion

This paper presented an absolute pose estimation al-
gorithm for dynamic mobile robot localization. The ab-
solute pose estimate is optimal in the weighted least-
squares sense. This method does not suffer from the non-
convergence problems associated to linearization as the
classical EKF approach. We proposed a direct correction
procedure to compensate for range image deformation due
to robot motion. Experimental results demonstrated the
good performance of this solution. We believe that the non-
convergence of the EKF is due to the well known problems
related to model linearization.

As future work, we plan to evaluate a more robust ver-
sion by converting the weighted least-squares into an iter-
ative M-estimator. In doing so, the weights are updated
following robust scale estimates.
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