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Abstract— This work presents an overall description of a Concurrent Mapping and Localization system im-
planted on a mobile robot. Its main contributions were on original robust methods for map-based localization
and stochastic mapping. In order to increase robustness on map-based localization, a new technique based on
robust M-estimators was proposed. With a new approach for environment mapping using stochastic constraints
between map structures, reduced map divergence was verified in experiments. Comparisons of the proposed
robust methods against classic Kalman filtering-based approaches were carried out in real environments.
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Resumo— Nesse trabalho é apresentada uma descrição geral de um sistema de Localização e Cartografia
Concorrentes que foi implantado em um robô móvel. Suas principais contribuições foram em métodos originais
de localização e cartografia estocástica. Como forma de aumentar a robustez da localização baseada em mapas
de ambiente, uma nova técnica usando M-estimadores robustos foi derivada. Com uma nova abordagem para
cartografia de ambientes usando restrições estocásticas verificou-se, experimentalmente, reduzida divergência dos
mapas constrúıdos. São ainda apresentadas comparações entre os métodos propostos e técnicas clássicas baseadas
em filtragem de Kalman.

Keywords— Localização e Cartografia Concorrentes, Robótica móvel, estimação robusta, sistema multisen-
sorial.

1 Introduction

Concurrent Mapping and Localization (CML) is a
very active subject of research on mobile robotics,
with numerous solutions proposed in the two last
decades. In this context, the initial most impor-
tant contributions were (Moravec and Elfes, 1985;
Smith et al., 1990; Leonard et al., 1992). In CML,
a mobile robot explores an previously unknown
environment and builds an internal representation
of it, in the form of an environment map. Depend-
ing on the environment map representation, there
exist solutions for topological (Kuipers and Byan,
1991), grid (Thrun et al., 1998), and geometrical-
based maps (Leonard and Feder, 2000). The en-
vironment map is used simultaneously for robot
localization, making the two processes concurrent.
Such a coupling between mapping and localization
makes the system very sensitive to deterministic
and stochastic errors in the involved estimation
procedures.

This work presents an overall description of a
CML system implanted on a real mobile robot, de-
scribed in more details in (Borges, 2002). Its main
contributions were on original robust methods for
map-based localization (Borges and Aldon, 2003)
and stochastic mapping (Borges and Aldon, 2002).
The paper is organized as follows. Section 2 intro-
duces the mobile robot used in this work, on which

the proposed CML system, presented in section 3,
was implanted. Experimental evaluations are in
section 4, followed by concluding remarks in sec-
tion 5.

2 Mobile platform

The mapping and localization system presented
in this work was implanted on the Omni, devel-
oped at LIRMM, in France (c.f. Fig. 1). Each
wheel has two motion axis, one for orientation
and one for traction. Its hardware architecture is
controlled by a PentiumTM II 300 MHz IBM-PC
microcomputer, which interfaces to its sensorial
apparatus and actuators through I/O cards and
high-speed serial links. As proprioceptive sensors,
there are (i) six incremental optical encoders, one
for each motion axis, (ii) three absolute encoders,
one for each wheel orientation axis, and (iii) a high
precision laser gyrometer (drift less than 45

◦

/h).
The exteroceptive sensors are (i) a monochrome
video camera and (ii) a rotating laser rangefinder,
manufactured by IBEO Lasertechnik, with a max-
imum range of 30 m a ±0.05 m accuracy. This
sensor provides scans in a 270◦ angular field with
a resolution of 0.6◦ at 8 images per second.

Omni’s kinematic model is derived based on
the rolling without slipping constraint at the
wheel/ground contact point (Campion et al.,



Figure 1: The Omni mobile platform.
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Figure 2: Omni geometric parameters.

1996). The describing parameters of its configura-
tion kinematic model is shown in Figure 2. Con-
sidering the i-th wheel, the geometric parameters
are its radii ri, its offset ei, and the coordinates
(xAi

, yAi
) of the wheel direction axis Ai in the two-

dimensional robot frame. Its configuration is de-
scribed by the direction angle βi and the posture
angle ϕi. Considering the three axis mechanism,
the model geometrical parameters are all stacked
in vector λ. Let q = (β1, β2, β3, ϕ1, ϕ2, ϕ3)

T be
the robot configuration parameters. The Omni
kinematic model given by

q̇ = J(q, λ, θ) · ż. (1)

with z = (x, y, θ)T being the robot coordinates in
the world frame and J being the Jacobian matrix,
whose pseudo-inverse exist for any robot configu-
ration. This brings the robot its omnidirectional
capability.

3 System description

The main modules of the localization and map-
ping architecture are illustrated in Figure 3. In
such a system, a robot pose estimated is updated

at high rates (5 ms sampling time) using dead-
reckoning. Due to accumulated dead-reckoning
errors, the robot pose is corrected during periodic
map-based pose estimation cycles, in this case ev-
ery two seconds. A cycle encompasses: extero-
ceptive sensor data acquisition, image processing,
local mapping and pose estimation. Once global
pose estimation is concluded, a (global) map up-
dating is performed. This architecture is almost
the same of most mobile robotic systems. Indeed,
its originality resides in each module, discussed in
the sequel.

3.1 Dead-reckoning

Dead-reckoning encompasses pose estimation
techniques which integrate data gathered from
proprioceptive sensors. Since no world reference
can be given by such sensors, pose estimate un-
certainty increases with time. The most known
dead-reckoning technique used in mobile robots
is odometry. It integrates the robot kinematic
model using motion information derived from axis
incremental encoders. Due to modeling errors and
approximate geometric parameters, odometry di-
verges rapidly. In order to minimize this, parame-
ter identification using extended Kalman filtering
was applied off-line to obtain a better estimate for
λ. In this procedure, the Omni’s laser gyrometer
provided high precision θ̇ measurements used for
updating the parameters estimate. It resulted in
an important accuracy enhancement of odometry.

It has been observed that small errors on θ,
propagated through odometry’s equations, have
a great impact on accuracy. In order to achieve
more accurate dead-reckoning, an other dead-
reckoning technique has been implanted: gy-
rodometry. In this technique, θ estimate is ob-
tained by directly integrating the accurate θ̇ mea-
surements provided by a laser gyrometer. Robot
position (x, y) is estimated using a reduced form
of Eq. (1).

3.2 Sensor data acquisition

This module performs the first procedures of a
localization cycle. It performs real-time, synchro-
nized data acquisition of a pair of laser rangefinder
and video camera images, named L and I, respec-
tively. As pre-processing procedures, (i) L is com-
pensated from robot motion during sensor scan-
ning, (ii) L is applied to local geometrical transfor-
mations in order to bring it to the instant when I
was acquired, using recorded dead-reckoning data.
These procedures are necessary in order to have
exteroceptive data coherent with the robot local
environment.



Figure 3: Procedures of the map building and localization system

3.3 Feature extraction

Feature extraction creates two lists ΩS and ΩU

of geometric primitives extracted from L and I.
From L, a set ΩS of line segments is extracted
by using the robust split-and-merge fuzzy algo-
rithm (Borges and Aldon, 2000). Further, laser
scan breakpoints are detected using an extended
Kalman filter-based approach (Castellanos and
Tardós, 1996). Breakpoints correspond to im-
portant discontinuities in the laser scan sequence,
and may indicate the extremities of local environ-
ment surfaces. From image I, similarly to (Arras
et al., 2001), a set ΩU of vertical line segments
is extracted, which correspond to strong vertical
contours in the image.

3.4 Local mapping

Given the set ΩS obtained from the range image,
an initial local map MR is built. Such a map is
composed of semiplanes (lines segments with side
of view), edges (semiplane extremities) and cor-
ners (the crossing point of two semiplanes). Semi-
planes are obtained from all line segments of ΩS .
Edges are computed from scan points which are
(i) support points of line segments, and (ii) break-
points. Edges are the projections on the support
line segment of all scan points which satisfy (i) and
(ii). Corners are the intersection of all line seg-
ments supported by consecutive scan points which
are not breakpoints.

A calibration procedure allowed to relate the
horizontal coordinate u of a video vertical line to
its angle of view φ in the laser rangefinder refer-
ence frame (Borges, 2002). This relationship is
given by an affine model, used to find correspon-
dences between the video vertical features and
edges. This is model is also explored int the sec-
ond phase of local map, which uses the vertical
lines extracted from the video image to update
the initial local map structures. For last, photo-

metric edges are estimated from all vertical lines
which did not have correspondences in the initial
local map. Since these structures are composed of
a point, and the camera can only capture their ob-
servation angle φ, they are estimated using boot-
strap samples, obtained from the distribution of
all scan points which lie, according to the Maha-
lanobis distance test, in the same angle of view
of the vertical line. Photometric edges presenting
large covariance matrices are discarded. Figure 4
shows a local map MR obtained from laser and
video images.

3.5 Map-based localization

This module performs absolute robot pose estima-
tion (corrects dead-reckoning) from corresponding
structures of maps MR and MG

k−1 (current global
map, updated in the last localization cycle at dis-
crete time k − 1). Classical methods based on
Kalman filtering lack of robustness and difficul-
ties associated to convergence is a critical prob-
lem. New approaches based on guaranteed opti-
mal estimation and linear Kalman filtering were
proposed in our previous research on the subject
(Borges and Aldon, 2003). In these approaches,
local map matching between MR and MG

k−1 re-
sults in a set of corresponding low-level geomet-
rical features (lines and points). From such fea-
tures, an optimal estimate of the robot pose in the
weighted least squares sense are obtained. Such
estimate ẑ minimize

J(z,U) =

N∑

n=1

µn · ‖rn‖
2
, (2)

where U represents the set of N feature corre-
spondences. rn is the residual of the n-th cor-
respondence defined in a common representation
for both types of features. µn is a positive weight-
ing factor, computed using robust weighting func-
tions (Huber, 1981). Such functions allow the al-
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Figure 4: Local map building example. (a) Range image and features (line segments and breakpoints).
(b) Video image and features (vertical lines). (c) Local map (S: Semiplanes, E: Edges, C: Corners, and
P: Photometric edges)

gorithm to reject (i.e., µ → 0) feature correspon-
dences which are unlikely to be in agreement with
the entire set of correspondences, as in cluttered
environments. The minimization of the cost func-
tion Eq. (2) is performed iteratively, resulting in
M-Estimators. The covariance matrix associated
with the pose estimate is also computed. Since
this procedure takes some time, the estimated
pose is updated to the current time by integrating
robot motion during this module execution time.

3.6 Map update

In this procedure, structures of MG
k−1 are updated

using the local observations at MR and the esti-
mated pose, resulting in MG

k . This is achieved us-
ing a decoupled map updating estimator (Borges
and Aldon, 2002), which propagates stochastic
constraints in order to minimize map divergence.
Such constraints do exist in local map structures
(e.g., and edge is over a semiplane), and should
be preserved in the global map MG

k . This has
been achieved from a rigorous theoretical analy-
sis of Kalman filter and the use of covariance in-
tersection filter (Julier and Uhlmann, 1997). It
should be pointed out that map-based localiza-
tion and map update modules are independent. It
means that, on the contrary of well known simul-
taneous map building and localization approaches
(Dissanayake et al., 2001)(Leonard et al., 1992),
which are coupled ones, the proposed modules do
not keep correlations between the robot pose and
the map structures. This reduces the overall sys-
tem complexity and computing time. This is in
counter sense of the well established idea that cor-
relations exist between pose and map structures,
and they should be estimated in order to achieve
consistent mapping. The idea we defend is that by
applying new stochastic estimation techniques, re-
liable and consistent mapping and localization can
be achieved.

4 Experimental evaluations

This section presents few results from experimen-
tal evaluations of (i) map-based pose estimation
and (ii) concurrent localization and mapping. For
more evaluations, please refer to (Borges, 2002).

4.1 Pose estimation

In order to evaluate the proposed map-based pose
estimators, an experiment in a long narrow cor-
ridor has been carried out. In this experiment,
Omni has followed a trajectory on which high
translational and rotational speeds have been ver-
ified. Some data of the experiment are shown
in Figure 5, including four video images. The
environment map was provided by our mapping
technique, but with accurate gyrodometry used
as pose estimator. This makes the pose estimator
and the environment map uncorrelated, leading to
an unbiased evaluation. Further, the entire exper-
imental data have been firstly acquired, and the
pose estimators were evaluated offline, under the
same conditions.

The offsets ε̂x, ε̂y and ε̂θ of pose parameters
(x, y, θ) with respect to gyrodometry are presented
on Figure 6. Thus, gyrodometry is also used as ref-
erence pose for comparison. This figure contains
the results of two different estimators: the sequen-
tial extended Kalman filter, commonly used for
geometrical map-based robot localization, and our
robust M-estimator, named µ-Huber. The ±3σ
limits, computed from the estimated error covari-
ance matrix, are represented in gray. The classi-
cal Kalman filtering approach has presented sta-
tistical divergence on x estimation starting from
the 50th localization cycle. This divergence has
been propagated to the other variables, leading
the robot to get completely lost after few cycles.
Such divergence is probably due to the presence
of false matchings (outliers) between the local and



(a) Experiment data
Number of localization cycles : 75
Experiment total time : 150,6 s
Total displacement : 85,38 m

Translational maximum velocity: 91,83 cm/s
Rotational maximum velocity: 39,4 ◦/s

(b) Images corresponding to some strategic points in the robot trajectory

Image 1 Image 29 Image 41 Image 56

(c) Global environmente map and robot trajectory
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Figure 5: Experimental evaluation contitions of pose estimation
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(a) Extended Kalman filtering (b) M-estimator (µ-Huber)

Figure 6: Offsets of the pose estimates with respect to gyrodometry, and ±3σ confidence intervals.

the global map. The robust M-estimator in Figure
6(b) did not diverged. At about the same local-
ization cycle on which the preceding approach di-
verged, the robust estimator presented statistical
estimation consistency, i,e., offsets inside the ±3σ
limits. In the whole experiment, estimated uncer-
tainty of the robust approach is larger than that
of Kalman filter, reflecting the difficulty level of
the experiment. Indeed, in narrow corridors and
at high speeds, errors occur more frequently.

4.2 Concurrent localization and environment
mapping

In this section, the proposed decoupled stochas-
tic propagation approach is compared against the
classical decoupled extended Kalman filtering one.
It is well known that the convergence of mapping
approaches can be evaluated in experiments on
closed loop environments. Thus, in the proposed

comparison, Omni navigated in an environment
with such characteristic, gathering data for offline
evaluation. The results are presented in Figure
7. Dead-reckoning is provided by odometry only,
which is likely to introduce larger localization er-
rors. Fig. 7(a) shows the map obtained using the
classical Kalman filtering approach. It is noto-
rious that this approach presented a large diver-
gence in this experiment. The proposed approach
presented satisfactory results in Figure 7(b). This
method used robust M-estimator (see previous
section) for pose estimation. Since concurrent lo-
calization and mapping is very sensitive to errors
at any component of the system, the better results
of Figure 7(b) are also in consequence of a supe-
rior performance of the localization and mapping
architecture.
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Figure 7: Experimental results of concurrent localization and mapping.

5 Conclusions

This paper presented the main contributions of
(Borges, 2002) in the field of Concurrent Mapping
and Localization. The presented solutions were
extensively evaluated on a real mobile platform,
the Omni robot. Currently, this robot has been
borrowed to Universidade de Brasilia, covered by
an agreement with Université Montpellier II. The
current research is focused on trajectory planning,
obstacle avoidance and visual navigation.
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